Research Article

Quartic Spline Interpolation

by  Y.P. Dubey, K.K. Paroha
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 91 - Issue 1
Published: April 2014
Authors: Y.P. Dubey, K.K. Paroha
10.5120/15843-4724
PDF

Y.P. Dubey, K.K. Paroha . Quartic Spline Interpolation. International Journal of Computer Applications. 91, 1 (April 2014), 5-8. DOI=10.5120/15843-4724

                        @article{ 10.5120/15843-4724,
                        author  = { Y.P. Dubey,K.K. Paroha },
                        title   = { Quartic Spline Interpolation },
                        journal = { International Journal of Computer Applications },
                        year    = { 2014 },
                        volume  = { 91 },
                        number  = { 1 },
                        pages   = { 5-8 },
                        doi     = { 10.5120/15843-4724 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2014
                        %A Y.P. Dubey
                        %A K.K. Paroha
                        %T Quartic Spline Interpolation%T 
                        %J International Journal of Computer Applications
                        %V 91
                        %N 1
                        %P 5-8
                        %R 10.5120/15843-4724
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have investigate existence, uniqueness and error bounds of deficient C1 Quartic Spline Interpolation.

References
  • A. Meri and A. Sharma, Convergence of interpolatory splines ibid, 1-243-250, 1968.
  • Carl Debour; A Practical Guide to Springer's Applied Mathematical Sciences, Vol. 27, Springer - Verlag, New York, 1979.
  • C. A. Hall and W. W. Meyer; Optimal error bounds for cubic spline interpolation J. Approx. Theory 16(1976), 105-22.
  • Dubean and J. Savier; explicit Error Bounds for spline interpolation on a uniform partition J. Approx. Theory 82 (1995), 1-14.
  • G. Howell and A. K. Verma, Best error bounds for quartic spline interpolation, J. Approx. "Theory, 58 (1989), 59-67.
  • K. A. Kopotum, Univariate Spline equivalence of moduli of smoothness and application, Mathematics of Computation, 76 (2007), 930-946.
  • K. Marken and M. Raimer's. An unconditionally convergents method for compacting zero's of splines and polynomials Mathematics of Computation 76 (2007), 845-866.
  • P. J. Davis, Interpolation and approximation, New York, 1961.
  • R. H. J. Gemling - Meyling. In Interpolation by Bivariate Quintic Splines of Class construction and theory of function, 87 (Ed) Sendor et. al. (1987), pp. 152-161.
  • 10. S. S. Rana and Y. P. Dubey. Best Error Bounds of deficient Quartic Spline Interpolation, Indian J. Pure Appl. Maths. 30 (1999) 385-393.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Deficient Quartic Spline Interpolation Error Bounds.

Powered by PhDFocusTM