Research Article

Nonsplit Geodetic Number of a Lict Graph

by  Venkanagouda M Goudar, Tejaswini K. M., Venkatesha
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 88 - Issue 6
Published: February 2014
Authors: Venkanagouda M Goudar, Tejaswini K. M., Venkatesha
10.5120/15360-3836
PDF

Venkanagouda M Goudar, Tejaswini K. M., Venkatesha . Nonsplit Geodetic Number of a Lict Graph. International Journal of Computer Applications. 88, 6 (February 2014), 36-39. DOI=10.5120/15360-3836

                        @article{ 10.5120/15360-3836,
                        author  = { Venkanagouda M Goudar,Tejaswini K. M.,Venkatesha },
                        title   = { Nonsplit Geodetic Number of a Lict Graph },
                        journal = { International Journal of Computer Applications },
                        year    = { 2014 },
                        volume  = { 88 },
                        number  = { 6 },
                        pages   = { 36-39 },
                        doi     = { 10.5120/15360-3836 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2014
                        %A Venkanagouda M Goudar
                        %A Tejaswini K. M.
                        %A Venkatesha
                        %T Nonsplit Geodetic Number of a Lict Graph%T 
                        %J International Journal of Computer Applications
                        %V 88
                        %N 6
                        %P 36-39
                        %R 10.5120/15360-3836
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

A set is a non split geodetic set of , if S is a geodetic set and is connected. The nonsplit geodetic number of a lict graph , denoted by , is the minimum cardinality of a nonsplit geodetic set of . The bounds on non split geodetic number in terms of elements of G and covering number of G. Further the relationship between nonsplit geodetic number and geodetic number of a graph is established.

References
  • G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph. Networks. 39, 1-6 (2002)
  • G. Chartrand and P. Zhang , Introduction to Graph Theory, Tata McGraw Hill Pub. Co. Ltd. (2006).
  • F. Harary, Graph Theory, Addison-Wesely, Reading, MA,(1969)
  • V. R. Kulli and M. H. Muddebihal. Lict Graph and Litact Graph of a Graph, Journal of Analysis and Computation, Vol. 2. No. 133-43. (2006).
  • Tejaswini K. M, Venkanagouda M Goudar, Venkatesha & M. H. Muddebihal, "ON THE LICT GEODETIC NUMBER OF A GRAPH", International Journal of Mathematics and Computer Applications Research Vol. 2, Issue 3 65-69, (2012).
  • Venkanagouda. M. Goudar,Tejaswini K. M. ,Venkatesha, Nonsplit Geodetic Number of a Graph, Indian Journal of pure and applied mathematics(submitted).
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Cartesian product Distance Edge covering number geodetic number Vertex covering number.

Powered by PhDFocusTM