Research Article

Parallelization of the Algorithm K-means Applied in Image Segmentation

by  Cristian Jose´ Lo´Pez Del A´ Lamo, Lizeth Joseline Fuentes P´Erez, Luciano Arnaldo Romero Calla
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 88 - Issue 17
Published: February 2014
Authors: Cristian Jose´ Lo´Pez Del A´ Lamo, Lizeth Joseline Fuentes P´Erez, Luciano Arnaldo Romero Calla
10.5120/15441-4051
PDF

Cristian Jose´ Lo´Pez Del A´ Lamo, Lizeth Joseline Fuentes P´Erez, Luciano Arnaldo Romero Calla . Parallelization of the Algorithm K-means Applied in Image Segmentation. International Journal of Computer Applications. 88, 17 (February 2014), 1-4. DOI=10.5120/15441-4051

                        @article{ 10.5120/15441-4051,
                        author  = { Cristian Jose´ Lo´Pez Del A´ Lamo,Lizeth Joseline Fuentes P´Erez,Luciano Arnaldo Romero Calla },
                        title   = { Parallelization of the Algorithm K-means Applied in Image Segmentation },
                        journal = { International Journal of Computer Applications },
                        year    = { 2014 },
                        volume  = { 88 },
                        number  = { 17 },
                        pages   = { 1-4 },
                        doi     = { 10.5120/15441-4051 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2014
                        %A Cristian Jose´ Lo´Pez Del A´ Lamo
                        %A Lizeth Joseline Fuentes P´Erez
                        %A Luciano Arnaldo Romero Calla
                        %T Parallelization of the Algorithm K-means Applied in Image Segmentation%T 
                        %J International Journal of Computer Applications
                        %V 88
                        %N 17
                        %P 1-4
                        %R 10.5120/15441-4051
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Algorithm k-means is useful for grouping operations; however, when is applied to large amounts of data, its computational cost is high. This research propose an optimization of k-means algorithm by using parallelization techniques and synchronization, which is applied to image segmentation. In the results obtained, the parallel k-means algorithm, improvement 50% to the algorithm sequential k-means.

References
  • Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons Inc, 1 edition, February 1973.
  • Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy. Advances in Knowledge Discovery and Data Mining. The MIT Press, February 1996.
  • A. Ferreira, J. M R S Tavares, and F. Gentil. A review of segmentation algorithms for ear image data. In Information Systems and Technologies (CISTI), 2012 7th Iberian Conference on, pages 1–6, 2012.
  • J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clustering algorithm. Applied Statistics, 28(1):100–108, 1979.
  • Mehmed Kantardzic. Data Mining: Concepts, Models, Methods and Algorithms. John Wiley & Sons, Inc. , New York, NY, USA, 2002.
  • Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global k-means clustering algorithm, 2001.
  • S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor. , 28(2):129–137, September 2006.
  • H. P. Ng, S. H. Ong, K. W C Foong, P. S. Goh, and W. L. Nowinski. Medical image segmentation using k-means clustering and improved watershed algorithm. In Image Analysis and Interpretation, 2006 IEEE Southwest Symposium on, pages 61– 65, 2006.
  • Suman Tatiraju and Avi Mehta. Image segmentation using kmeans clustering, em and normalized cuts.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

parallelization k-means segmentation images

Powered by PhDFocusTM