Research Article

On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces

by  Mausumi Sen
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 85 - Issue 3
Published: January 2014
Authors: Mausumi Sen
10.5120/14823-3057
PDF

Mausumi Sen . On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces. International Journal of Computer Applications. 85, 3 (January 2014), 30-33. DOI=10.5120/14823-3057

                        @article{ 10.5120/14823-3057,
                        author  = { Mausumi Sen },
                        title   = { On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces },
                        journal = { International Journal of Computer Applications },
                        year    = { 2014 },
                        volume  = { 85 },
                        number  = { 3 },
                        pages   = { 30-33 },
                        doi     = { 10.5120/14823-3057 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2014
                        %A Mausumi Sen
                        %T On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces%T 
                        %J International Journal of Computer Applications
                        %V 85
                        %N 3
                        %P 30-33
                        %R 10.5120/14823-3057
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this article we introduce the notions of I-limit superior and I-limit inferior for sequences in intuitionistic fuzzy normed linear spaces and prove intuitionistic fuzzy analogue of some results of I-limit superior and I-limit inferior for real sequences. The concept of I-limit points and I-cluster points in intuitionistic fuzzy normed linear spaces are introduced and some of their properties have been established.

References
  • Anastassiou, G. A. 2004. Fuzzy approximation by fuzzy convolution type operators. Comput. Math. Appl. 48,1369-1386.
  • Atanassov, K. T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets. Syst. 20,87-96.
  • Demirci, K. 2001. I-limit superior and I-limit inferior, Math. Communications. 6(2), 165-172.
  • Erceg, M. A. 1979. Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 69, 205-230.
  • Jäger, G. 2000. Fuzzy uniform convergence and equicontinuity. Fuzzy Sets Syst. 109,187-198.
  • Kostyrko, P. , Šalát, T. and Wilczy?ski, W. 2000. I-convergence. Real Anal. Exchange. 26, 669-686.
  • Saadati, R. , Park, J. H. 2006. Intuitionistic fuzzy Euclidean normed spaces. Commun. Math. Anal. 12,85-90.
  • Schweizer, B. , Sklar, A. 1960. Statistical metric spaces. Pacific J. Math. 10, 314-344.
  • Zadeh, L. A. 1965. Fuzzy sets. Inform. Cont. 8 , 338-353.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Intuitionistic fuzzy normed linear space I-convergence I-limit superior I-limit inferior

Powered by PhDFocusTM