Research Article

Convexity Preserving Interpolation by GC2-Rational Cubic Spline

by  M. Dube, P. S. Rana
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 84 - Issue 4
Published: December 2013
Authors: M. Dube, P. S. Rana
10.5120/14561-2685
PDF

M. Dube, P. S. Rana . Convexity Preserving Interpolation by GC2-Rational Cubic Spline. International Journal of Computer Applications. 84, 4 (December 2013), 1-3. DOI=10.5120/14561-2685

                        @article{ 10.5120/14561-2685,
                        author  = { M. Dube,P. S. Rana },
                        title   = { Convexity Preserving Interpolation by GC2-Rational Cubic Spline },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 84 },
                        number  = { 4 },
                        pages   = { 1-3 },
                        doi     = { 10.5120/14561-2685 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A M. Dube
                        %A P. S. Rana
                        %T Convexity Preserving Interpolation by GC2-Rational Cubic Spline%T 
                        %J International Journal of Computer Applications
                        %V 84
                        %N 4
                        %P 1-3
                        %R 10.5120/14561-2685
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

A weighted rational cubic spline interpolation has been constructed using rational spline with quadratic denominator. GC1-piecewise rational cubic spline function involving parameters has been constructed which produces a monotonic interpolant to given monotonic data . The degree of smoothness of this spline is GC2 in the interpolating interval when the parameters satisfy a continuous system. It is observed that under certain conditions the interpolant preserve the convexity property of the data set. We have discussed the constrains for GC2-rational spline interpolant in section. Also the error estimate formula of this interpolation are obtained.

References
  • Delbourgo, R. , Gregory, J. A. , Shape preserving piecewise rational interpolation, SIAM journal of scientific and statistical computing. 6(4)(1985), 967-976.
  • Delbourgo, R. and Gregory, J. A. , The determination of derivative parameters for a monotonic rational quadratic interpolant, IMA J. Numer. Ana. 5(1985), 397-406.
  • Duan, Q. , Wang, L. , Twizell, E. H. , A new weighted rational cubic interpolation and its approximation,, Appl. Math. Comput. , 2005, 168,pp. 990-1003.
  • Dube, M. , Tiwari, P. , Convexity preserving C2 rational quadratic trigonometric spline, AIP conference proceeding, 1479(2012), 995-998.
  • Foley, T. A. , Local control of interval tension using weighted spline, CAGD. 3(1986), 281-294.
  • Sarfraz, M. , Curves and surfaces for computer aided design using C2 rational cubic spline , engineering with computers. 11(1995), 94-102.
  • Sarfraz, M. , Butt, S. , Hussain,M. Z. , Interpolation for the positivity using rational cubics proceedings of ISOSS-IV, August 27- 31, Lahore, Pakistan. 8(1994), 251-261.
  • Schultz, M. H. , Spline analysis, Prentice Hall, Englewood Cliffs, New Jersey
  • .
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Interpolation shape parameters monotonicity convexity approximation

Powered by PhDFocusTM