Research Article

A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences

by  Gajendra Pratap Singh
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 84 - Issue 16
Published: December 2013
Authors: Gajendra Pratap Singh
10.5120/14657-2946
PDF

Gajendra Pratap Singh . A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences. International Journal of Computer Applications. 84, 16 (December 2013), 1-7. DOI=10.5120/14657-2946

                        @article{ 10.5120/14657-2946,
                        author  = { Gajendra Pratap Singh },
                        title   = { A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 84 },
                        number  = { 16 },
                        pages   = { 1-7 },
                        doi     = { 10.5120/14657-2946 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A Gajendra Pratap Singh
                        %T A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences%T 
                        %J International Journal of Computer Applications
                        %V 84
                        %N 16
                        %P 1-7
                        %R 10.5120/14657-2946
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Petri nets are a graphic and mathematic modeling tool which is applicable to several systems and to all those systems presenting particular characteristics such as concurrency, distribution, parallelism, non-determinism and/or stochastically. In this paper, a wheel Petri net whose reachability tree contains all the binary n- tuples or sequences as marking vectors has been defined. The result is proved by the using of the Principle of Mathematical Induction (PMI) on jPj = n.

References
  • Petri, C. A. , Kommunikation mit automaten, Schriften des Institutes fur Instrumentelle Mathematik, Bonn 1962.
  • Kansal, S. , Acharya, M. and Singh, G. P. , Boolean Petri nets. In: Petri nets — Manufacturing and Computer Science (Ed. : Pawel Pawlewski), 381-406; Chapter 17. In-Tech Global Publisher, 2012, ISBN 978-953-51-0700-2.
  • Kansal, S. , Singh, G. P. and Acharya, M. , On Petri nets generating all the binary n-vectors, Scientiae Mathematicae Japonicae, 71(2), 2010, 209-216.
  • Peterson, J. L. , Petri net Theory and the Modeling of Systems, Englewood Cliffs, NJ: Prentice-Hall, Inc. , 1981.
  • Harary, F. , Graph theory, Addison-Wesley, Massachusettes, Reading, 1969.
  • Jensen, K. , Coloured Petri nets, Lecture notes in Computer Science, Springer-Verlag, Berlin, 254, 1986, 248-299.
  • Reisig, W. , Petri nets, Springer-Verleg, New York, 1985.
  • Murata, T. , Petri nets: Properties, analysis and applications, Proc. IEEE, 77(4), 1989, 541-580.
  • Acharya, B. D. , Set-indexers of a graph and set-graceful graphs, Bull. Allahabad Math. Soc. , 16, 2001, 1-23.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

1-safe Petri net reachability tree binary n-vector marking vector wheel graph

Powered by PhDFocusTM