Research Article

Generalization of Semi-Projective Modules

by  Manoj Kumar Patel, B. M. Pandeya, V. Kumar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 83 - Issue 8
Published: December 2013
Authors: Manoj Kumar Patel, B. M. Pandeya, V. Kumar
10.5120/14465-2757
PDF

Manoj Kumar Patel, B. M. Pandeya, V. Kumar . Generalization of Semi-Projective Modules. International Journal of Computer Applications. 83, 8 (December 2013), 1-6. DOI=10.5120/14465-2757

                        @article{ 10.5120/14465-2757,
                        author  = { Manoj Kumar Patel,B. M. Pandeya,V. Kumar },
                        title   = { Generalization of Semi-Projective Modules },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 83 },
                        number  = { 8 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/14465-2757 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A Manoj Kumar Patel
                        %A B. M. Pandeya
                        %A V. Kumar
                        %T Generalization of Semi-Projective Modules%T 
                        %J International Journal of Computer Applications
                        %V 83
                        %N 8
                        %P 1-6
                        %R 10.5120/14465-2757
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper characterization of pseudo M-p-projective modules and quasi pseudo principally projective modules are given and discussed the various properties of it. It is proved that a pseudoM-pprojective module is Hopfian iff M=N is Hopfian, for each fully invariant small submodule N of M. It is also provided the sufficient condition for pseudo M-p-projective module to be discrete. Finally several equivalent conditions are given for a quasi pseudo principally projective module to have the finite exchange property.

References
  • Birkenmeier, G. F. , Muller, B. J. , Rizvi, S. T. , (2002), Modules in which Every Fully Invariant Submodule is Essential in a Direct Summand, Comm. in Algebra, 30(3), 1395-1415.
  • Chaturvedi, A. K. , Pandeya, B. M. , Gupta, A. J. , (2009), Quasi-pseudo principally injective modules, Algebra Colloquium, 16 : 3, 397-402.
  • Clark, J. , Lomp, C. , Vanaja, N. , Wisbauer, R. , (2006), Lifting Modules. Suppliments and projectivity in module theory. Frontiers in Math. Boston: Birkhauser.
  • Ganesan, L. , Vanaja, N. , (2007), Strongly discrete module, Comm. in Algebra, 35 : 897-913.
  • Golan, J. S. , (1970), Characterization of Rings using Quasi projective Modules, Israel J. Math, 8, 34-38.
  • Keskin, D. , (1998), Finite Direct sum of (D1)-Modules, Turkish Journal of Mathematics, 22, 85-91.
  • Mohamed, S. H. , Muller, B. J. , (1990), Continuous and Discrete Module. Cambridge University Press.
  • Nicholson, W. K. , (1977), Lifting Idempotents and Exchange Rings, Trans. American Mathematicl Society, Vol. 229, 269- 278.
  • Pandeya, B. M. , Pandey, A. K. , (2002), Almost Perfect Ring and Directly Finite Module, Int. J. Math. Sci. , 1, No. 1-2, 111- 115.
  • Patel, M. K. , Pandeya, B. M. , (2010), Quasi-Pseudo Principally Projective Modules, Proceeding of International Conference on Algebra and its Application, Narosa Publishing House Pvt. Ltd. New Delhi, India.
  • Quynh, T. C. , (2011), On Pseudo semi-projective Modules, Turkish Journal of Mathematics, 35, 1-10.
  • Sanh, N. V. , Shum, K. P. , Dhompongsa, S. and Wongwai, S. , (1999), On Quasi Principally Injective Modules, Algebra colloquium, 6:3, 269-276.
  • Somchit C. , (2002), When is a Quasi-p-injective Module Continuous?, Southeast Asian Bulletin of Mathematics, 26 : 391- 394.
  • Tansee, H. , and Wongwai, S. , (2002), A note on semi projective modules, Kyungpook Math Journal, 42 : 369-380.
  • Tiwary, A. K. , Bharadwaj, P. C. and Pandeya, B. M. , (1982), Quotients of Pseudo Projective Modules, Bull. of The Ins. of mathematics Academia Sinica, Vol. 10, No. 4.
  • Varadarajan, K. , (1997), Properties of Endomorphism Rings, Acta. Math. Hungar. , 74(1-2).
  • Wisbauer, R. , (1991), Foundation of Module and Ring Theory, Gordon and Breach, London-tokyo.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

PseudoM-p-projective module Discrete module Hollow module Finite exchange property.

Powered by PhDFocusTM