Research Article

Missing Numbers in K-Graceful Graphs

by  P. Pradhan, Kamesh Kumar, A. Kumar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 79 - Issue 8
Published: October 2013
Authors: P. Pradhan, Kamesh Kumar, A. Kumar
10.5120/13758-1597
PDF

P. Pradhan, Kamesh Kumar, A. Kumar . Missing Numbers in K-Graceful Graphs. International Journal of Computer Applications. 79, 8 (October 2013), 1-6. DOI=10.5120/13758-1597

                        @article{ 10.5120/13758-1597,
                        author  = { P. Pradhan,Kamesh Kumar,A. Kumar },
                        title   = { Missing Numbers in K-Graceful Graphs },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 79 },
                        number  = { 8 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/13758-1597 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A P. Pradhan
                        %A Kamesh Kumar
                        %A A. Kumar
                        %T Missing Numbers in K-Graceful Graphs%T 
                        %J International Journal of Computer Applications
                        %V 79
                        %N 8
                        %P 1-6
                        %R 10.5120/13758-1597
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The generalization of graceful labeling is termed as k-graceful labeling. In this paper it has been shown that? C?_(n ),n?0(mod4) is k-graceful for any k?N (set of natural numbers) and some results related to missing numbers for k-graceful labeling of cycle? C?_n, comb? P?_n?1K_1, hairy cycle C_n?1K_1and wheel graph? W?_n have been discussed.

References
  • Acharya, B. D. 1984. Are all polyminoes arbitrarily graceful?, Proc. First Southeast Asian Graph Theory Colloquium (Eds: K. M. Koh, H. P. Yap), Springer-Verlag, N. Y. , 205-211.
  • Bagga, J. , Heinz, A. and Majumder, M. M. 2007. Properties of graceful labeling of cycle, Congress Nemrantum, 188, 109-115.
  • Bu, C. , Zhang, D. , He, B. 1994. k-gracefulness of? C?_m^n, J. Harbin Shipbuilding Eng. Inst. , 15, 95-99.
  • Gallian, J. A. 2011. A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 18 #DS6.
  • Golomb, S. W. 1972. How to number a graph, in Graph Theory and Computing, R. C. Read, ed. ,Academic Press, New York 23-37.
  • Lee, S. M. 1988. All pyramids, lotuses and diamonds are k-graceful,Bull. Math. Soc. Sci, Math. R. S. Roumanie (N. S. ), 32, 145-150.
  • Liang, Zh. H. , Sun, D. Q. , Xu, R. J. 1993. k-graceful labeling of the wheel graph W_2k , J. Hebei Normal College, 1, 33-44.
  • Maheo, M. and Thuillier, H. 1982. On d-graceful graphs, ArsCombinat, 13, 181-192.
  • Pradhan, P. and Kumar, A. 2011. Graceful hairy cycles with pendent edges and some properties of cycles and cycle related graphs, Bulletin of The Calcutta Mathematical Society 103(3) 233 – 246.
  • Rosa, A. 1966. On certain valuations of the vertices of a graph,Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris, 349-355.
  • Slater, P. J. 1982. On k-graceful graphs, In: Proc. Of the 13th South Eastern Conference on Combinatorics, Graph Theory and Computing, 53-57.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

k-Graceful labeling k-graceful graphs missing numbers.

Powered by PhDFocusTM