Research Article

On Beta Combination Labeling Graphs

by  T. Tharmaraj, P. B. Sarasija
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 79 - Issue 13
Published: October 2013
Authors: T. Tharmaraj, P. B. Sarasija
10.5120/13802-1807
PDF

T. Tharmaraj, P. B. Sarasija . On Beta Combination Labeling Graphs. International Journal of Computer Applications. 79, 13 (October 2013), 26-29. DOI=10.5120/13802-1807

                        @article{ 10.5120/13802-1807,
                        author  = { T. Tharmaraj,P. B. Sarasija },
                        title   = { On Beta Combination Labeling Graphs },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 79 },
                        number  = { 13 },
                        pages   = { 26-29 },
                        doi     = { 10.5120/13802-1807 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A T. Tharmaraj
                        %A P. B. Sarasija
                        %T On Beta Combination Labeling Graphs%T 
                        %J International Journal of Computer Applications
                        %V 79
                        %N 13
                        %P 26-29
                        %R 10.5120/13802-1807
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Let G(V,E) be a graph with p vertices and q edges. A graph G(p,q) is said to be a Beta combination graph if there exist a bijection f: V(G) ? {1,2 …. , p } such that the induced function Bf: E(G)?N, N is a natural number, given by Bf (uv)= ,every edges uv ? G and are all distinct and the function f is called the Beta combination labeling of G [8]. In this paper, we prove quadrilateral snake Qn,double triangular snake , alternate triangular snake A(Tn), alternate quadrilateral snake A(Qn), helm Hn ,the gear graph,Comb Pn?K1 ,the graph Cn?K1 and the diamond graph are the Beta combination graphs.

References
  • B. D. Acharya and S. M. Hegde,Arithmetic graphs,J. Graph Theory,14(3)(1990),275-299.
  • L. Beineke and S. M. Hegde,Stronly multiplicative graphs,Discuss. Math. Graph Theory, 21(2001),63-75.
  • D. M. Burton,Elementary Number Theory,Second Edition,Wm. C. Brown company Publishers,1980.
  • F. Harary, Graph Theory,Addison-Wesley,Reading,Massachusetts,1972.
  • S. M. Hegde and Sudhakar Shetty,Combinatorial Labelings of Graphs, Applied Mathematics E-Notes, 6(2006),251-258.
  • J. A. Gallian,A dynamic survey of graph labeling,The Electronic journal of combinatorics,5(2002),# DS6,1-144.
  • S. S. Sandhya , S. Somasundaram , R. Ponraj , Harmonic Mean Labeling of Some Cycle Related Graphs , Int. J. of Math. Analysis, Vol. 6, 2012, no. 40, 1997-2005.
  • T. TharmaRaj , P. B. Sarasija , Betacombination Graphs , In. Journal of Computer Applications , Vol. 76 , No. 14 , 2013.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Beta combination graph and Beta combination labeling.

Powered by PhDFocusTM