Research Article

Beta Combination Graphs

by  T. Tharmaraj, P. B. Sarasija
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 76 - Issue 14
Published: August 2013
Authors: T. Tharmaraj, P. B. Sarasija
10.5120/13312-0589
PDF

T. Tharmaraj, P. B. Sarasija . Beta Combination Graphs. International Journal of Computer Applications. 76, 14 (August 2013), 1-5. DOI=10.5120/13312-0589

                        @article{ 10.5120/13312-0589,
                        author  = { T. Tharmaraj,P. B. Sarasija },
                        title   = { Beta Combination Graphs },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 76 },
                        number  = { 14 },
                        pages   = { 1-5 },
                        doi     = { 10.5120/13312-0589 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A T. Tharmaraj
                        %A P. B. Sarasija
                        %T Beta Combination Graphs%T 
                        %J International Journal of Computer Applications
                        %V 76
                        %N 14
                        %P 1-5
                        %R 10.5120/13312-0589
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Let G(V,E) be a graph with p vertices and q edges. A graph G(p,q) is said to be a Beta combination graph if there exist a bijection f: V(G) ? {1,2 …. , p } such that the induced function Bf: E(G)?N, N is a natural number, given by Bf (uv)= ,every edges uv G and are all distinct and the function f is called the Beta combination labeling. In this paper, we proved the Petersen graph , Complete graph Kn (n? 8),Ladder Ln (n 2), fan fn (n? 2), wheel Wn(n? 3), path Pn , cycle Cn(n?3),friendship graph Fn (n?1),complete bipartite graph Kn,n (n? 2), Tree Tn , triangle snake , n-bistar graph Bn,n and Star graph K1,n (n>1) are the Beta combination graphs. Also we proved Complete graph Kn (n>8) is not a Beta combination graph.

References
  • B. D. Acharya and S. M. Hegde,Arithmetic graphs,J. Graph Theory,14(3)(1990),275-299.
  • L. Beineke and S. M. Hegde,Stronly multiplicative graphs,Discuss. Math. Graph Theory, 21(2001),63-75.
  • D. M. Burton,Elementary Number Theory,Second Edition,Wm. C. Brown company Publishers,1980.
  • J. A. Gallian,A dynamic survey of graph labeling, The Electronic journal of combinatorics,5(2002),# DS6,1-144.
  • S. M. Hegde and Sudhakar Shetty,Combinatorial Labelings of Graphs,Applied Mathematics E-Notes, 6(2006),251-258.
  • F. Harary, Graph Theory,Addison-Wesley, Reading,Massachusetts,1972.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Beta combination graph and Beta combination labeling

Powered by PhDFocusTM