Research Article

On (h, m)-Anti-Fuzzy Subrings

by  B. Anitha, D. Sivakumar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 75 - Issue 8
Published: August 2013
Authors: B. Anitha, D. Sivakumar
10.5120/13135-0499
PDF

B. Anitha, D. Sivakumar . On (h, m)-Anti-Fuzzy Subrings. International Journal of Computer Applications. 75, 8 (August 2013), 45-47. DOI=10.5120/13135-0499

                        @article{ 10.5120/13135-0499,
                        author  = { B. Anitha,D. Sivakumar },
                        title   = { On (h, m)-Anti-Fuzzy Subrings },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 75 },
                        number  = { 8 },
                        pages   = { 45-47 },
                        doi     = { 10.5120/13135-0499 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A B. Anitha
                        %A D. Sivakumar
                        %T On (h, m)-Anti-Fuzzy Subrings%T 
                        %J International Journal of Computer Applications
                        %V 75
                        %N 8
                        %P 45-47
                        %R 10.5120/13135-0499
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we introduce the notions of ( ; )-anti-fuzzy subrings, studied some properties of them and discussed the product of them.

References
  • S. K. Bhakat and P. Das, (2;2 _q)-fuzzy group Fuzzy Sets and Systems 80(1996) 359-368.
  • S. K. Bhakat and P. Das, (2; 2 _q)-fuzzy normal, quasi normal and maximal sub-groups Fuzzy Sets and Systems 112(2000) 299-312.
  • S. K. Bhakat, On the definitions of fuzzy group, Fuzzy Sets and Systems 51(1992) 235-241.
  • B. Dong, Direct product of anti-fuzzy subgroups, J Shaoxing Teachers College 5(1992) in Chinese 29-34.
  • W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 59(1993) 205-210.
  • Rajeshkumar, Fuzzy Algebra, Publication Division, University of Delhi 1(1993).
  • Z. Shen, The anti-fuzzy subgroup of a group, J. Liaoning Normat University (Nat. Sci. ) 18(2) (1995) in Chinese 99- 101.
  • B, Yao, ( ; )-fuzzy normal subgroups and ( ; )-fuzzy quotients subgroups, The Journal of Fuzzy Mathematics 13 (3) (2005) 695-705.
  • B, Yao, ( ; )-fuzzy subrings and ( ; )-fuzzy ideals, The Journal of Fuzzy Mathematics 15 (4) (2007) 981-987.
  • Yuming Feng and Bingxue Yao, On ( ; )-anti-fuzzy subgroups, Journal of Inequalities and Applications 10, 1186/1029-242X-2012-78.
  • L. A. Zadeh, Fuzzy Set, Information and Control 8 (1965) 338-353.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

( )-anti-fuzzy subring ( )-anti-fuzzy ideal product homomorphism.

Powered by PhDFocusTM