Research Article

A Breast Cancer Diagnosis System using Hybrid Case-based Approach

by  Dina A. Sharaf-El Deen, Ibrahim F. Moawad, M. E. Khalifa
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 72 - Issue 23
Published: June 2013
Authors: Dina A. Sharaf-El Deen, Ibrahim F. Moawad, M. E. Khalifa
10.5120/12681-9450
PDF

Dina A. Sharaf-El Deen, Ibrahim F. Moawad, M. E. Khalifa . A Breast Cancer Diagnosis System using Hybrid Case-based Approach. International Journal of Computer Applications. 72, 23 (June 2013), 14-20. DOI=10.5120/12681-9450

                        @article{ 10.5120/12681-9450,
                        author  = { Dina A. Sharaf-El Deen,Ibrahim F. Moawad,M. E. Khalifa },
                        title   = { A Breast Cancer Diagnosis System using Hybrid Case-based Approach },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 72 },
                        number  = { 23 },
                        pages   = { 14-20 },
                        doi     = { 10.5120/12681-9450 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A Dina A. Sharaf-El Deen
                        %A Ibrahim F. Moawad
                        %A M. E. Khalifa
                        %T A Breast Cancer Diagnosis System using Hybrid Case-based Approach%T 
                        %J International Journal of Computer Applications
                        %V 72
                        %N 23
                        %P 14-20
                        %R 10.5120/12681-9450
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Nowadays, mammography is recognized as the most effective technique for breast cancer diagnosis. Case-Based Reasoning (CBR) is one of the important techniques used to diagnose the breast cancer disease. The retrieval-only CBR systems do not provide an acceptable accuracy in critical domains such as medical. In this paper, a new breast cancer diagnosis system using hybrid case-based approach is presented to improve the accuracy of the retrieval-only CBR systems. The approach integrates case-based reasoning and rule-based reasoning, and applies the adaptation process automatically by exploiting adaptation rules. Both adaptation rules and reasoning rules are generated automatically from the case-base. After solving a new case, the case-base is expanded, and both adaptation and reasoning rules are updated automatically. To evaluate the proposed approach, a prototype was implemented and experimented to diagnose the breast cancerdisease. The final results showed that the proposed approach increases the diagnosing accuracy comparing with the retrieval-only CBR systems, and provides a reliable accuracy comparing to the current breast cancer diagnosis systems.

References
  • Ahmed, M. U. , Begum, S. , & Funk, P. 2012. A Hybrid Case-Based System in Stress Diagnosis and Treatment. In IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI2012).
  • Sahin, S. , Tolun, M. R. , &Hassanpour, R. 2012. Hybrid expert systems: A survey of current approaches and applications. Expert Systems with Applications, 39(4), 4609-4617.
  • Bichindaritz, I. , &Montani, S. 2011. Guest Editorial: Advances in case-based reasoning in the health sciences. Artificial Intelligence in Medicine, 51(2), 75-79.
  • Kolodner, J. 1993. Case based reasoning. Morgan Kauffman, San Mateo, California
  • Aamodt, A. , & Plaza, E. 1994. Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59.
  • Baumeister, J. , Atzmuller, M. , Puppe, F. 2002. Inductive learning for case-based diagnosis with multiple fault, in: Advanced in Case-Based Reasoning: 6thEuropean Conference, ECCBR, Springer, Berlin, pp. 28-42
  • Hunt, J. , Miles, R. 1994. Hybrid case-based reasoning, The Knowledge Engineering Review,vol. 9(4), pp. 383-397.
  • Lenz, M. , Bartsch-Spörl, B. , Burkhard, H. D. , &Wess, S. 1998. Case-based reasoning technology, from foundations to applications. Springer-Verlag.
  • Macura, R. T. , &Macura, K. 1997. Case-based reasoning: opportunities and applications in health care. Artificial Intelligence in Medicine, 9(1), 1.
  • Begum, S. , Ahmed, M. U. , Funk, P. , Xiong, N. , &Folke, M. 2011. Case-based reasoning systems in the health sciences: a survey of recent trends and developments. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 41(4), 421-434.
  • Sharaf-Eldeen, D. A. , Moawad, I. F. , El Bahnasy, K. , &Khalifa, M. E. 2012. Learning and Applying Range Adaptation Rules in Case-Based Reasoning Systems. In Advanced Machine Learning Technologies and Applications (pp. 487-495). Springer Berlin Heidelberg.
  • Blanco, X. , Rodríguez, S. , Corchado, J. M. , &Zato, C. 2013. Case-Based Reasoning Applied to Medical Diagnosis and Treatment. In Distributed Computing and Artificial Intelligence (pp. 137-146). Springer International Publishing.
  • Li, H. , Li, X. , Hu, D. , Hao, T. , Wenyin, L. , & Chen, X. 2009. Adaptation rule learning for case?based reasoning. Concurrency and Computation: Practice and Experience, 21(5), 673-689.
  • Yusof, M. M. , & Buckingham, C. D. (2009). Medical case-based reasoning: A review of retrieving, matching and adaptation processes in recent systems. InProceedings of the IASTED International Conference (Vol. 639, p. 053).
  • Huang, M. J. , Chen, M. Y. , & Lee, S. C. 2007. Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis. Expert Systems with Applications, 32(3), 856-867.
  • Schmidt, R. , &Vorobieva, O. 2006. Case-based reasoning investigation of therapy inefficacy. Knowledge-Based Systems, 19(5), 333-340.
  • Marling, C. , Shubrook, J. , & Schwartz, F. 2008. Case-based decision support for patients with type 1 diabetes on insulin pump therapy. In Advances in Case-Based Reasoning (pp. 325-339). Springer Berlin Heidelberg.
  • Schmidt, R. , &Gierl, L. 2005. A prognostic model for temporal courses that combines temporal abstraction and case-based reasoning. International journal of medical informatics, 74(2), 307-315.
  • Ochoa, A. , Meza, M. , González, S. , Padilla, A. , Damiè, M. , Torre, D. L. J. , & Jiménez-Vielma, F. 2008. An intelligent tutor based on case-based reasoning to medical use. Advances in Computer Science and Engineering. Research in Computing Science. , 34, 187-194.
  • O'Sullivan, D. , Bertolotto, M. , Wilson, D. , &McLoghlin, E. 2006. Fusing mobile case-based decision support with intelligent patient knowledge management. In Workshop on CBR in the Health Sciences (pp. 151-160).
  • Ayer, T. , Ayvaci, M. U. , Liu, Z. X. ,Alagoz, O. , & Burnside, E. S. 2010. Computer-aided diagnostic models in breast cancer screening. Imaging, 2(3), 313-323.
  • Huang, M. L. , Hung, Y. H. , Lee, W. M. , Li, R. K. , & Wang, T. H. 2012. Usage of Case-Based Reasoning, Neural Network and Adaptive Neuro-Fuzzy Inference System Classification Techniques in Breast Cancer Dataset Classification Diagnosis. Journal of medical systems, 36(2), 407-414.
  • Pawlak, Z. 1982. Rough sets. International Journal of Computer and Information Sciences, 11(5), 341 – 356.
  • Yang, Y. P. O. , Shieh, H. M. , Tzeng, G. H. , Yen, L. , & Chan, C. C. 2008. Business aviation decision-making using rough sets. In Rough Sets and Current Trends in Computing (pp. 329-338). Springer Berlin Heidelberg.
  • Shyng, J. Y. , Wang, F. K. , Tzeng, G. H. , & Wu, K. S. 2007. Rough set theory in analyzing the attributes of combination values for the insurance market. Expert Systems with Applications, 32(1), 56-64.
  • Ziarko, W. P. , & Van Rijsbergen, C. J. 1994. Rough sets, fuzzy sets and knowledge discovery (Vol. 15). London: Springer-Verlag.
  • "http://archive. ics. uci. edu/ml/datasets. html", last accessed: May 2013
  • Salzberg, S. L. 1997. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and knowledge discovery, 1(3), 317-328.
  • Jiang, Y. , et al. 1996. Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology,198(3), 671-678.
  • Markopoulos, C. , Kouskos, E. , Koufopoulos, K. , Kyriakou, V. , &Gogas, J. 2001. Use of artificial neural networks (computer analysis) in the diagnosis of microcalcifications on mammography. European journal of radiology, 39(1), 60-65.
  • Huo, Z. , Giger, M. L. ,Vyborny, C. J. , & Metz, C. E. 2002. Breast Cancer: Effectiveness of Computer-aided Diagnosis—Observer Study with Independent Database of Mammograms1. Radiology, 224(2), 560-568.
  • Floyd, C. E. , Lo, J. Y. , &Tourassi, G. D. 2000. Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions. American Journal of Roentgenology, 175(5), 1347-1352.
  • Elter, M. , Schulz-Wendtland, R. , & Wittenberg, T. 2007. The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Medical Physics, 34, 4164.
  • Chan, H. P. , et al. 1999. Improvement of Radiologists' Characterization of Mammographic Masses by Using Computer-aided Diagnosis: An ROC Study1. Radiology, 212(3), 817-827.
  • Gupta, S. , Chyn, P. F. , & Markey, M. K. 2006. Breast cancer CAD based on BI-RADS™ descriptors from two mammographic views. Medical physics, 33, 1810.
  • Wang, X. H. , Zheng, B. , Good, W. F. , King, J. L. , & Chang, Y. H. 1999. Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. International Journal of Medical Informatics, 54(2), 115-126.
  • Chhatwal, J. , Alagoz, O. , Lindstrom, M. J. , Kahn, C. E. , Shaffer, K. A. , & Burnside, E. S. 2009. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. American Journal of Roentgenology, 192(4), 1117-1127.
  • Burnside, E. S. , et al. 2009. Probabilistic Computer Model Developed from Clinical Data in National Mammography Database Format to Classify Mammographic Findings1. Radiology, 251(3), 663-672.
  • Ayer, T. , Alagoz, O. , Chhatwal, J. , Shavlik, J. W. , Kahn, C. E. , & Burnside, E. S. 2010. An artificial neural network to quantify malignancy risk based on mammography findings: discrimination and calibration. Cancer.
  • Bilska-Wolak, A. O. , Floyd Jr, C. E. , Lo, J. Y. , & Baker, J. A. 2005. Computer aid for decision to biopsy breast masses on mammography: validation on new cases. Academic radiology, 12(6), 671.
  • Park, S. H. , Goo, J. M. , & Jo, C. H. 2004. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean Journal of Radiology, 5(1), 11-18.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Case-based reasoning (CBR) Rule-based reasoning (RBR) Adaptation rules Breast cancer diagnosis Mammography

Powered by PhDFocusTM