Research Article

On L- fuzzy Generalized Topology

by  Heba I. Mustafa
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 69 - Issue 28
Published: May 2013
Authors: Heba I. Mustafa
10.5120/12245-8513
PDF

Heba I. Mustafa . On L- fuzzy Generalized Topology. International Journal of Computer Applications. 69, 28 (May 2013), 4-7. DOI=10.5120/12245-8513

                        @article{ 10.5120/12245-8513,
                        author  = { Heba I. Mustafa },
                        title   = { On L- fuzzy Generalized Topology },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 69 },
                        number  = { 28 },
                        pages   = { 4-7 },
                        doi     = { 10.5120/12245-8513 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A Heba I. Mustafa
                        %T On L- fuzzy Generalized Topology%T 
                        %J International Journal of Computer Applications
                        %V 69
                        %N 28
                        %P 4-7
                        %R 10.5120/12245-8513
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce the concepts of L-fuzzy generalized neighborhood system(f-gns for short) and L-fuzzy generalized topology (fgt, for short)(where L is a fuzzy lattice) which are generalizations of generalized topology and neighborhood systems defined by Csaszar[5]. We also introduce and investigate with the help of these new concepts the concepts of L-( 1; 2) continuity and L-fuzzy generalized continuity on f-gns. The relations between these concepts are investigated and several examples are presented. ifx

References
  • G. Abbaspour and A. Taghavi, A note on generalized topology, international mathematical forum, 6(1)(2011), 19-24.
  • A. Bargiela,W. Pedrycz, Granular Computing: An Introduction. Kluwer Academic Publishers, Hingham, MA (2003).
  • C. L. Chang, Fuzzy topological spaces, J Math. Anal. Appl. , 24(1968), 182-190.
  • A. Csaszar, Generalized open sets, Acta Math. Hungar. , 75(1997), 65-87.
  • A. Csaszar, Generalized continuity, Acta Math. Hungar. , 96(2002), 351-357.
  • A. Csaszar, Separation axioms for generalized topologies, Acta Math Hungar, 104(2004), 63-69.
  • A. Csaszar, Extremally disconnected generalized topologies, Annales Univ Budapest, Sectio Math, 47(2004), 151-161.
  • B. Ganter, P. Wille, formal concept analysis, springer, Berlin, Germany, 1999.
  • G. Gerz et. al, A compendium of continuous lattices, (Springer, Berlin, 1980).
  • J. A. Goguen, L-fuzzy subsets, J Math. Anall. Appl. ,18(1967), 115-174.
  • J. A. Goguen, The fuzzy Tychonof theorem, J Math. Anall. Appl. , 43(1973), 734-742.
  • H. Heijmans, Morphological Image Operators. Academic Press, New York, NY (1994).
  • J. Jarvinen, Set operations for L-fuzzy sets. In: Rough Sets amd Intelligent Sys- tem radigms. Volume 4585 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2007), 221-229.
  • J. Jarvinen, Lattice theory for rough sets. In: Transactions on Rough Sets VI. Volume 4374 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, (2007), 400498.
  • Y. Raun, J. Qin, Lattice-valued logic, springer, Heidelberg, Germany,2003.
  • J. Thomas, S. Jacob, -Compactness in Generalized Topological Spaces,Journal of Advanced Studies in Topology, 3(3)(2012), 18-22.
  • G. Urcid, N. Valdiviezo, J. Ritter, Lattice algebra approach to color image segmentation. Journal of Mathematical Imaging and Vision 42(2-3) (2012), 150-162.
  • M. W. Warner, frame fuzzy points and membership, fuzzy set and systems 42(1991)103-110.
  • M. W. Warner, fuzzy topology with respect to continuous lattices, fuzzy set and systems, 35(1990), 85-91.
  • G. Xun and G. Ying, separations in generalized topological spaces, Appl. Math. J. Chinese Univ, 25(2010), 243-252.
  • L. A. Zadeh, fuzzy sets, Information and control, (1995), 353-383.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Fuzzy lattice L-fuzzy generalized topology L-fuzzy generalized neighborhood systems L-fuzzy generalized continuity

Powered by PhDFocusTM