Research Article

Hyers-Ulam-Rassias Stability of Quadratic Functional Equations in 2-Banach Spaces

by  Manoj Kumar, Renu Chugh, Ashish
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 63 - Issue 8
Published: February 2013
Authors: Manoj Kumar, Renu Chugh, Ashish
10.5120/10483-5225
PDF

Manoj Kumar, Renu Chugh, Ashish . Hyers-Ulam-Rassias Stability of Quadratic Functional Equations in 2-Banach Spaces. International Journal of Computer Applications. 63, 8 (February 2013), 1-4. DOI=10.5120/10483-5225

                        @article{ 10.5120/10483-5225,
                        author  = { Manoj Kumar,Renu Chugh,Ashish },
                        title   = { Hyers-Ulam-Rassias Stability of Quadratic Functional Equations in 2-Banach Spaces },
                        journal = { International Journal of Computer Applications },
                        year    = { 2013 },
                        volume  = { 63 },
                        number  = { 8 },
                        pages   = { 1-4 },
                        doi     = { 10.5120/10483-5225 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2013
                        %A Manoj Kumar
                        %A Renu Chugh
                        %A Ashish
                        %T Hyers-Ulam-Rassias Stability of Quadratic Functional Equations in 2-Banach Spaces%T 
                        %J International Journal of Computer Applications
                        %V 63
                        %N 8
                        %P 1-4
                        %R 10.5120/10483-5225
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, using the direct method we study the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equations and for the mapping f from normed linear space in to 2-Banach spaces.

References
  • A. White, 2-Banach spaces, Doctorial Diss. , St. Louis Univ. , 1968.
  • A. White, 2-Banach spaces, Math. Nachr. (42) (1969), pp. 43–60.
  • D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. (27) (1941), pp. 222–224.
  • H. A. Kenary, D. Y. Shin, J. R. Lee and H. Hoseini, Fixed Point and Hyers-Ulam stability of functional equations, (5) (37) (2011), pp. 1827-1833.
  • I. S. Chang and H. M. Kim, On the Hyers-Ulam-Rassias stability of quadratic functional equations, J. Ineq. Pure and Appl. Math. , (3) (3) (2002), pp. 1-12.
  • P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. (184) (1994), pp. 431–436.
  • S. G¨ahler, 2-metrische R¨aume und ihre topologische Struktur, Math. Nachr. (26) (1963), pp. 115–148.
  • S. G¨ahler, Lineare 2-normierte R¨aumen, Math. Nachr. (28) (1964), pp. 1–43.
  • S. G¨ahler, Uber ¨ 2-Banach-R¨aume, Math. Nachr. (42) (1969), pp. 335–347.
  • S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. , New York, 1960.
  • Th. M. Rassias, On the stability of the Linear mapping in Banach spaces, Procc. of the Amer. Math. Soc. , (72) (2) (1978), pp. 297-300.
  • Th. M. Rassias, On the Stability of Functional Equations in Banach spaces, J. Math. Anal. Appl. , (251) (2000), pp. 264–284.
  • W. -G. Park, Approximate additive mapping in 2-Banach spaces and related topics, J. Math. Anal. Appl. (376) (2011), pp. 193–202.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Linear 2-normed space 2-Banach spaces Quadratic functional equations Stability

Powered by PhDFocusTM