Research Article

Dynamics of Antifractals in Noor Orbit

by  Ashish, Mamta Rani, Renu Chugh
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 57 - Issue 4
Published: November 2012
Authors: Ashish, Mamta Rani, Renu Chugh
10.5120/9101-3236
PDF

Ashish, Mamta Rani, Renu Chugh . Dynamics of Antifractals in Noor Orbit. International Journal of Computer Applications. 57, 4 (November 2012), 11-15. DOI=10.5120/9101-3236

                        @article{ 10.5120/9101-3236,
                        author  = { Ashish,Mamta Rani,Renu Chugh },
                        title   = { Dynamics of Antifractals in Noor Orbit },
                        journal = { International Journal of Computer Applications },
                        year    = { 2012 },
                        volume  = { 57 },
                        number  = { 4 },
                        pages   = { 11-15 },
                        doi     = { 10.5120/9101-3236 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2012
                        %A Ashish
                        %A Mamta Rani
                        %A Renu Chugh
                        %T Dynamics of Antifractals in Noor Orbit%T 
                        %J International Journal of Computer Applications
                        %V 57
                        %N 4
                        %P 11-15
                        %R 10.5120/9101-3236
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Interesting antifractals are involved in the dynamics of antipolynomials , for m ? 2. The purpose of this paper is to visualize antifractals in Noor orbit and study the pattern among them.

References
  • Ashish, M. Rani, and R. Chugh, New Julia sets and Mandelbrot sets in Noor orbit, (preprint), 2012.
  • Y. S. Chauhan, R. Rana, and A. Negi, New tricorn and multicorn of Ishikawa iterates, Int. J. Comput. Appl. , (7)(13)(2010), 25-33.
  • W. D. Crowe, R. Hasson, P. J. Rippon, and P. E. D. Strain-Clark, On the structure of the Mandelbar set, Nonlinearity, (2)(4)(1989), 541-553.
  • R. L. Devaney, A first course in chaotic dynamical systems: theory and experiment, Addison-Wesley, New York, 1992.
  • E. Lau, and D. Schleicher, Symmetries of fractals revisited. Math. Intelligencer (18)(1)(1996), 45-51.
  • S. Nakane, and D. Schleicher, On multicorns and unicorns: I. Antiholomorphic dynamics hyperbolic components and real cubic polynomials, Int. J. Bifur. Chaos Appl. Sci. Engr. , (13)(10)(2003), 2825-2844.
  • M. A Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. , (251)(2000), 217-229.
  • H. O. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals, Springer-Verlag, New York, 1994.
  • M. Rani, Superior antifractals, in: IEEE Proc. ICCAE 2010, vol. 1, 798-802.
  • M. Rani, Superior tricorns and multicorns, in: Proc. 9th WSEAS Int. Conf. on Appl. Comp. Engg. (ACE'10), 2010, 58-61.
  • M. Rani, and M. Kumar, Circular saw Mandelbrot sets, in: Proc. 14th WSEAS Int. Conf. on Appl. Math. (Math'09), 2009, 131-136.
  • R. Winters, Bifurcations in families of antiholomorphic and biquadratic maps, Ph. D Thesis, Boston Univ. , London, 1990.
  • Zazzle, http://www. zazzle. com/tricorn+gifts
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Antipolynomial antifractal tricorn multicorn antiJulia set four-step feedback process Noor orbit

Powered by PhDFocusTM