|
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
|
| Volume 50 - Issue 12 |
| Published: July 2012 |
| Authors: M. I. Moussa, E. M. Badr |
10.5120/7820-0945
|
M. I. Moussa, E. M. Badr . A Computational Study for the Graph-theoretic Version of the Union-closed Sets Conjecture. International Journal of Computer Applications. 50, 12 (July 2012), 1-5. DOI=10.5120/7820-0945
@article{ 10.5120/7820-0945,
author = { M. I. Moussa,E. M. Badr },
title = { A Computational Study for the Graph-theoretic Version of the Union-closed Sets Conjecture },
journal = { International Journal of Computer Applications },
year = { 2012 },
volume = { 50 },
number = { 12 },
pages = { 1-5 },
doi = { 10.5120/7820-0945 },
publisher = { Foundation of Computer Science (FCS), NY, USA }
}
%0 Journal Article
%D 2012
%A M. I. Moussa
%A E. M. Badr
%T A Computational Study for the Graph-theoretic Version of the Union-closed Sets Conjecture%T
%J International Journal of Computer Applications
%V 50
%N 12
%P 1-5
%R 10.5120/7820-0945
%I Foundation of Computer Science (FCS), NY, USA
An induced subgraph S of a graph G is called a derived subgraph of G if S contains no isolated vertices. An edge e of G is said to be residual if e occurs in more than half of the derived subgraphs of G. We prove some theorems which calculate the number of derived subgraphs for some special graphs. We also present a new algorithm SDSA that calculates the number of derived subgraphs for a given graph G and determines the residual and non-residual edges. Finally, we introduce a computational study which supports our results.