Research Article

Inverse Circular Saw

by  Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava, Ashish Negi
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 36 - Issue 8
Published: December 2011
Authors: Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava, Ashish Negi
10.5120/4510-6377
PDF

Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava, Ashish Negi . Inverse Circular Saw. International Journal of Computer Applications. 36, 8 (December 2011), 13-16. DOI=10.5120/4510-6377

                        @article{ 10.5120/4510-6377,
                        author  = { Gunjan Srivastava,Shafali Agarwal,Vikas Srivastava,Ashish Negi },
                        title   = { Inverse Circular Saw },
                        journal = { International Journal of Computer Applications },
                        year    = { 2011 },
                        volume  = { 36 },
                        number  = { 8 },
                        pages   = { 13-16 },
                        doi     = { 10.5120/4510-6377 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2011
                        %A Gunjan Srivastava
                        %A Shafali Agarwal
                        %A Vikas Srivastava
                        %A Ashish Negi
                        %T Inverse Circular Saw%T 
                        %J International Journal of Computer Applications
                        %V 36
                        %N 8
                        %P 13-16
                        %R 10.5120/4510-6377
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Superior Mandelbrot set is the term, which Rani and Kumar used to make Circular Saw using complex polynomial equation zn+c .The objective of this paper is to analyze the fractals using same equation with condition; when n is negative.

References
  • Ashish Negi and Mamta Rani, A new approach to dynamic noise on superior Mandelbrot set, Chaos, Solitons & Fractals (2008)(36)(4), pp. 1089-1096.
  • B. B. Mandelbrot, The Fractal Geometry of Nature,W. H, Freeman Company, San Francisco, CA (1982).
  • C. Pickover, “Computers, Pattern, Chaos, and Beauty”, St. Martin’s Press, NewYork, 1990.
  • D. Ashlock, Evolutionary Exploration of the Mandelbrot Set, Proc. IEEE Congress on Evolutionary Computation, 2006, CEC 2006, pp. 2079-2086.
  • D. Rochon, A generalized Mandelbrot set for bicomplex numbers, Fractals 8(4)(2000), pp. 355-368.
  • M. Rani and V. Kumar, Superior Mandelbrot set, J. Korean Soc. Math. Edu. Ser. D (2004)8(4), pp. 279-291.
  • Mamta Rani, and Manish Kumar, Circular saw Mandelbrot sets, in: WSEAS Proc. 14th Int. conf. on Applied Mathematics (Math ’09): Recent Advances in Applied Mathematics, Spain, Dec 14-16, 2009, 131-136.
  • Mann,W.R. Mean Value Methods in Iteration. Proc. Amer. Math. Soc. 4,504-510.
  • Richard M. Crownover, Introduction to Fractals and Chaos, Jones & Barlett Publishers, 1995.
  • Robert L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison- Wesley, 1992.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Superior Mandelbrot set Fractals Circular Saw Escape Criteria Mann Iteration

Powered by PhDFocusTM