Research Article

Comparative Study of Channel Estimation Algorithms under Different Channel Scenario

by  Tirthankar Paul, Priyabrata Karmakar, Sourav Dhar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 34 - Issue 7
Published: November 2011
Authors: Tirthankar Paul, Priyabrata Karmakar, Sourav Dhar
10.5120/4113-5927
PDF

Tirthankar Paul, Priyabrata Karmakar, Sourav Dhar . Comparative Study of Channel Estimation Algorithms under Different Channel Scenario. International Journal of Computer Applications. 34, 7 (November 2011), 31-38. DOI=10.5120/4113-5927

                        @article{ 10.5120/4113-5927,
                        author  = { Tirthankar Paul,Priyabrata Karmakar,Sourav Dhar },
                        title   = { Comparative Study of Channel Estimation Algorithms under Different Channel Scenario },
                        journal = { International Journal of Computer Applications },
                        year    = { 2011 },
                        volume  = { 34 },
                        number  = { 7 },
                        pages   = { 31-38 },
                        doi     = { 10.5120/4113-5927 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2011
                        %A Tirthankar Paul
                        %A Priyabrata Karmakar
                        %A Sourav Dhar
                        %T Comparative Study of Channel Estimation Algorithms under Different Channel Scenario%T 
                        %J International Journal of Computer Applications
                        %V 34
                        %N 7
                        %P 31-38
                        %R 10.5120/4113-5927
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The principle objective of this work is to enhance the knowledge about channel estimation and to compare the existing channel estimation techniques under different channel conditions. Normally the received signal is corrupted by the channel (Multipath, ISI). The estimation of a time-varying multipath fading channel is a difficult task for the receiver. Its performance can be improved if an appropriate channel estimation filter is used according to the prior knowledge of the fading channel. In this work the two popular estimation algorithms, viz., LMS and RLS are studied with respect to AWGN, Rician and Rayleigh channels. The simulation is performed in MATLAB platform.

References
  • Safaya .R “A Multipath Channel Estimation Algorithm using a Kalman filter” online available at: http://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.142.1549&rep=rep1&type=pdf
  • Haykin, S. (1996), “Adaptive Filter Theory, 3/e”, Prentice Hall.
  • ASTM E2213, "Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems 5GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications, http ://wwwastmorg, January 2006.
  • ITS project website. Nov. 2006.
  • Online. Available: http://www.its.dot.gov/index.htm
  • T. L. Doumi, “Spectrum considerations for public safety in the United States,” IEEE Commun. Mag., vol. 44, no. 1, pp. 30–37, Jan. 2006.
  • IEEE P802.11p/D2.01, “Standard for Wireless Local AreaNetworks Providing Wireless Communications while in Vehicular Environment,” Mar. 2007.
  • Daniel Jiang, Luca Delgrossi, “IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments”, IEEE Vehicular Technology Conference, Singapore, 11-14 May, 2008. DOI:10.1109/VETECS.2008.458
  • S.Dhar, R.Bera, R.B. Giri, S.Anand, D.Nath, S.Kumar (2011), “An Overview of V2V Communication Channel Modeling”, in proceedings of ISDMISC’11, 12-14 April, 2011, Sikkim, India.
  • Rabindranath Bera, Sanjib Sil, Sourav Dhar and Subir K. Sarkar (2008), “Wi-Fi, WiMax and WCDMA A comparative study based on Channel Impairments and Equalization method used” International Symposium on Microwave, December 2008, Bangalore, India
  • Jones et al. “Adaptive Filtering: LMS Algorithm”-02.06.2005 16:10 filterdesign exercise in matlab (http://cnx.rice.edu/content/m10623/latest/).
  • Vandeveen, M.C., Vanderveen, A.J. and Paulraj, A. (1998), “Estimation of Multipath Parameters in Wireless Communications”, IEEE Transactions on Signal Processing, Vol: 46, No. 3, pp(682-690),March 1998;doi: 10.1109/78.661335
  • Rontogiannis,A.A., Berberidis,K., Marava,A. and Palicot, J. (2005), “Efficient semi-blind estimation of multipath channel parameters via a delay decoupling optimization approach”, Signal Processing 85 (2005) 2394–2411, Elsevier; doi:10.1016/j.sigpro.2005.02.018
  • Mossberg, M., Larsson,E.K. and Mossberg, E. (2009), “Long-term fading channel estimation from sample covariances”, Automatica 45 (2009) 1126- 1133, Elsevier; doi:10.1016/j.automatica.2008.12.013
  • Bottomley,G.E., Ottosson, T. Wang, Y.P.E. (2000), “A Generalized RAKE Receiver for Interference Suppression” IEEE Journal on Selected Areas in Communication, VOL. 18, NO. 8, pp(1536 - 1545), AUGUST 2000; doi: 10.1109/49.864017
  • Wei, L., Dong, J., Ye , F. and Yang, S. (2009), “Research on a new kind of Rake-MKFA receiver based on DS-UWB system”, 5th International Conference on Wireless Communications, Networking and Mobile Computing, 24-26 Sept. 2009, WiCom '09; doi: 10.1109/WICOM.2009.5305739
  • Olama, M.M. Djouadi, S.M. Charalambous, C.D. (2009) , “Stochastic Differential Equations for Modeling, Estimation and Identification of Mobileto-Mobile Communication Channels” , IEEE Transactions on Wireless Communications, Volume: 8, Issue: 4, pp(1754 – 1763), April 2009; doi: 10.1109/TWC.2009.071068
  • Shetty k.k. “LEAST MEAN SQUARE ALGORITHM” http://etd.lib.fsu.edu/theses/available/etd-04092004-143712/unrestricted/Ch_6lms.pdf
  • RLS online available at: http://en.wikipedia.org/wiki/Recursive_least_squares_filter
  • Additive white Gaussian noise online available at: http://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
  • Rician fading online available at: http://en.wikipedia.org/wiki/Rician_fading
  • Rayleigh fading online available at: http://en.wikipedia.org/wiki/Rayleigh_fading
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

LMS (Least Mean Square) RLS (Recursive Least-Squares) AWGN (Additive white Gaussian noise) Rayleigh Fading Channel & Rician Fading Channel

Powered by PhDFocusTM