Research Article

Article:Strong Convergence of SP Iterative Scheme for Quasi-Contractive Operators

by  Renu Chugh, Vivek Kumar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 31 - Issue 5
Published: October 2011
Authors: Renu Chugh, Vivek Kumar
10.5120/3820-5294
PDF

Renu Chugh, Vivek Kumar . Article:Strong Convergence of SP Iterative Scheme for Quasi-Contractive Operators. International Journal of Computer Applications. 31, 5 (October 2011), 21-27. DOI=10.5120/3820-5294

                        @article{ 10.5120/3820-5294,
                        author  = { Renu Chugh,Vivek Kumar },
                        title   = { Article:Strong Convergence of SP Iterative Scheme for Quasi-Contractive Operators },
                        journal = { International Journal of Computer Applications },
                        year    = { 2011 },
                        volume  = { 31 },
                        number  = { 5 },
                        pages   = { 21-27 },
                        doi     = { 10.5120/3820-5294 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2011
                        %A Renu Chugh
                        %A Vivek Kumar
                        %T Article:Strong Convergence of SP Iterative Scheme for Quasi-Contractive Operators%T 
                        %J International Journal of Computer Applications
                        %V 31
                        %N 5
                        %P 21-27
                        %R 10.5120/3820-5294
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper , we study the strong convergence of SP iterative scheme for quasi-contractive operators in Banach spaces. We show that Picard , Mann , Ishikawa , Noor, new two step and SP iterative schemes are equivalent for quasi-contractive operators. In addition, we show that the rate of convergence of SP iterative scheme is better than the other iterative schemes mentioned above for increasing and decreasing functions.

References
  • Berinde , V., On the convergence of the Ishikawa iteration in the class of quasi-contractive operators, Acta Math. Univ. Comenianae LXXIII(2004), 119-126.
  • Berinde, V., Iterative Approximation of Fixed Points, Springer-Verlag, Berlin Heidelberg, 2007.
  • Berinde, V., Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory and Applications, volume 2(2004), 97-105.
  • Ishikawa, S. , Fixed points by a new iteration method , Proc. Amer. Math. Soc. 44(1974), 147-150.
  • Mann , W.R., Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953), 506-510.
  • Noor, M. A., New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251(2000), 217-229.
  • Phuengrattana , Withunand , Suantai, Suthep , On the rate of convergence of Mann Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, Journal of Computational and Applied Mathematics, 235(2011), 3006- 3014.
  • Rafiq, A.,On the convergence of the three- step iteration process in the class of quasi-contractive operators , Acta Mathematica Academiae Paedagogicae Nyiregyhaziens 22(2006), 305-309.
  • Rhoades , B. E., Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56(1976), 741-750.
  • Rhoades , B. E. and Soltuz , S¸.M., On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci. 2003(2003), 451-459.
  • Rhoades ,B. E. and Soltuz , S¸.M., The equivalence of the Mann and Ishikawa iteration for non-Lipschitzian operators, Int. J. Math. Math. Sci. 42(2003), 2645-2652.
  • Rhoades ,B. E. and Soltuz , S¸.M., The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically pseudocontractive map, J. Math. Anal. Appl. 283(2003), 681-688.
  • Rhoades , B. E. and Soltuz , S¸.M., The equivalence of Mann and Ishikawa iteration for a Lipschitzian psi-uniformly pseudocontractive and psi-uniformly accretive maps, Tamkang J. Math., 35(2004), 235-245.
  • Rhoades , B. E. and S¸oltuz , S¸.M., The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl. 289(2004), 266-278.
  • Rhoades , B. E. and Soltuz , S¸.M., The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Analysis 58(2004), 219-228.
  • Singh , S. L., A new approach in numerical Praxis, Progress Math.(Varansi) 32(2) (1998),75-89.
  • Soltuz , S¸.M., The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Math. Comm. 10(2005), 81-89.
  • Soltuz ,S¸. M., The equivalence between Krasnoselskij , Mann, Ishikawa ,Noor and multistep iterations, Mathematical Communications 12(2007),53-61.
  • Thiainwan, S., Common fixed points of new iterations for two asymptotically nonexpansive nonself mappings in Banach spaces, Journal of Computational and Applied Mathematics,2009,688-695.
  • Yildirim ,Isa, Ozdemir, Murat and Kiziltunc ,Hukmi, On the convergence of the new two-step iteration process in the class of quasi-contractive operators , Int. Journal of Math Analysis,Vol 3(2009),no. 38 ,1881-1892.
  • Zamfirescu, T., Fixed point theorems in metric spaces, Arch. , Math., 23(1972), 292-298.
  • Zhiqun, Xue , Remarks on equivalence among Picard, Mann and Ishikawa iterations in Normed spaces. Fixed Point Theory and Applications, volume 2007, 5 pages.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

SP iteration Picard iteration Mann iteration Ishikawa iteration Noor iteration new two step iteration Strong convergence Quasi-contractive operators

Powered by PhDFocusTM