Research Article

Fixed Point Theorems for (?, ?)-Contractive maps in Weak non-Archimedean Fuzzy Metric Spaces and Application

by  V. Sihag, R. K. Vats, C. Vetro
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 27 - Issue 2
Published: August 2011
Authors: V. Sihag, R. K. Vats, C. Vetro
10.5120/3275-4454
PDF

V. Sihag, R. K. Vats, C. Vetro . Fixed Point Theorems for (?, ?)-Contractive maps in Weak non-Archimedean Fuzzy Metric Spaces and Application. International Journal of Computer Applications. 27, 2 (August 2011), 23-27. DOI=10.5120/3275-4454

                        @article{ 10.5120/3275-4454,
                        author  = { V. Sihag,R. K. Vats,C. Vetro },
                        title   = { Fixed Point Theorems for (?, ?)-Contractive maps in Weak non-Archimedean Fuzzy Metric Spaces and Application },
                        journal = { International Journal of Computer Applications },
                        year    = { 2011 },
                        volume  = { 27 },
                        number  = { 2 },
                        pages   = { 23-27 },
                        doi     = { 10.5120/3275-4454 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2011
                        %A V. Sihag
                        %A R. K. Vats
                        %A C. Vetro
                        %T Fixed Point Theorems for (?, ?)-Contractive maps in Weak non-Archimedean Fuzzy Metric Spaces and Application%T 
                        %J International Journal of Computer Applications
                        %V 27
                        %N 2
                        %P 23-27
                        %R 10.5120/3275-4454
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The present study introduce the notion of (ψ, ϕ)-Contractive maps in weak non-Archimedean fuzzy metric spaces to derive a common fixed point theorem which complements and extends the main theorems of [C.Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets and System, 162(2011), 84-90] and [D.Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and System, 159(2008) 739-744]. We support our result by establishing an application to product spaces.

References
  • Doric, D. 2009. Common fixed point for generalized (ψ, φ)-weak contractions. Applied Mathematics Letter. Vol. 22, 1896-1900.
  • Dutta, P. N., Choudhary B. S. 2008. A generalization of contraction principle in metric spaces. Fixed Point Theory and Appl., 1-7. Article ID 74503.
  • Naschie, M.S. El. 2004. A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals. Vol. 9, 209-236.
  • Naschie, M.S. El. 2005. From experimental quantum optics to quantum gravity via a fuzzy Kahler manifold. Chaos, Solitons & Fractals. Vol. 25, 969-977.
  • Naschie, M.S. El. 2005. On a class of fuzzy Kahler-like manifolds, Chaos, Solitons& Fractals. Vol. 26, 257-261.
  • Naschie, M.S. El. 1998. On the uncertainty of Cantorian geometry and the two slit experiment, Chaos, Solitons& Fractals, Vol. 9, 517-529.
  • Naschie, M.S. El. 2004. Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature. Chaos, Solitons& Fractals, Vol. 20, 437-450.
  • George, A. and Veeramani, P. 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems. Vol. 64, 395-399.
  • Grabiec, M. 1989. Fixed points in fuzzy metric spaces, Fuzzy Sets and System. Vol. 27, 385-389.
  • Gregori, V. and Sapena, A. 2002. On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems. Vol. 125, 245–252.
  • Kaleva, O. and Seikkala, S. 1984. On fuzzy metric spaces, Fuzzy Sets and Systems. Vol. 12, 215-229.
  • Kramosil, I. and Michalek, J. 1975. Fuzzy metric and statistical metric spaces. Kybernetika. Vol. 11, 336-344.
  • Mihet, D. 2008. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and System. Vol. 159, 739-744.
  • Morillas, S., Gregori, V., Peris-Fajarnes, G. and Latorre, P. 2005. A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging. Vol.11, 417-428.
  • Morillas, S., Gregori, V., Peris-Fajarnes, G. and Latorre, P. 2005. A new vector median filter based on fuzzy metrics. In Lecture Notes in Computer Science. 3656, 81-90.
  • Morillas, S., Gregori, V., Peris-Fajarnes, G and Sapena A., 2008. Local self-adaptive fuzzy filter for impulsive noise removal in color images. Signal Processing. 88, 390-398.
  • Popescu, O. 2011. Fixed point for (ψ, φ)-weak contractions. Applied Mathematics Letters. Vol. 24, 1-4.
  • Schweizer, B. and Sklar, A. 1983. Proba bilistic metricspaces. In North Holland Series in Probability and Applied Mathematics. New York. Amsterdam, Oxford. 1983.
  • Vetro C. 2011. Fixed points in weak non-Archimedean fuzzy metric spaces. Fuzzy Sets and System. Vol. 162, 84- 90.
  • Zhang, Q. and Song, Y. 2009. Fixed point theory for generalized φ-weak contractions. Applied Mathematics Letters. Vol. 22, 75-78.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Common fixed points Non-Archimedean fuzzy metric space ϕ)-contractive maps

Powered by PhDFocusTM