Research Article

Realistic and Robust Image Transfer using Deep Learning

by  Rhitik Prajapati, Sonal Fatangare, Shreya Nikam, Devashri Suravase, Tilak Raut
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 7
Published: May 2025
Authors: Rhitik Prajapati, Sonal Fatangare, Shreya Nikam, Devashri Suravase, Tilak Raut
10.5120/ijca2025924954
PDF

Rhitik Prajapati, Sonal Fatangare, Shreya Nikam, Devashri Suravase, Tilak Raut . Realistic and Robust Image Transfer using Deep Learning. International Journal of Computer Applications. 187, 7 (May 2025), 20-25. DOI=10.5120/ijca2025924954

                        @article{ 10.5120/ijca2025924954,
                        author  = { Rhitik Prajapati,Sonal Fatangare,Shreya Nikam,Devashri Suravase,Tilak Raut },
                        title   = { Realistic and Robust Image Transfer using Deep Learning },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 7 },
                        pages   = { 20-25 },
                        doi     = { 10.5120/ijca2025924954 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Rhitik Prajapati
                        %A Sonal Fatangare
                        %A Shreya Nikam
                        %A Devashri Suravase
                        %A Tilak Raut
                        %T Realistic and Robust Image Transfer using Deep Learning%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 7
                        %P 20-25
                        %R 10.5120/ijca2025924954
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In the ever-evolving world of deep learning, creating photorealistic photo editing poses is challenging, especially when modifying features such as hairstyles in photos. The system leverages advanced generative adversarial networks (GANs) to solve problems such as misalignment, texturing, and lighting conflicts. A dedicated color adjustment module controls hair color change even under different lighting conditions, while a refinement module restores fine details for highly realistic final images. Recent solutions have shown significant improvements in both speed and accuracy. These advances are paving the way for more implementation in areas like virtual experiments, interactive tournaments, and design tools. In this survey, we examine the most advanced deep learning techniques for processing real-life images, focusing on their ability to handle complex transformations like hair editing.

References
  • Aljohani, A., & Alharbe, N. (2022). Generating Synthetic Images for Healthcare with Novel Deep Pix2Pix GAN. Electronics, 11(21), 3470. https://doi.org/10.3390/electronics11213470
  • Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1809.11096
  • Chen, Q., & Koltun, V. (2017). Photographic Image Synthesis with Cascaded Refinement Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1707.09405
  • Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial NETS. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1606.03657
  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2010.11929
  • Dosovitskiy, A., & Brox, T. (2016). Generating Images with Perceptual Similarity Metrics based on Deep Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1602.02644
  • Esser, P., Rombach, R., & Ommer, B. (2020). Taming Transformers for High-Resolution Image Synthesis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2012.09841
  • Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1406.2661
  • Huang, X., & Belongie, S. J. (2017). Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1703.06868
  • Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1611.07004
  • Karmakar, A., & Mishra, D. (2020). A robust pose Transformational GAN for pose guided person image synthesis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2001.01259
  • Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of GANs for improved quality, stability, and variation. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1710.10196
  • Karras, T., Laine, S., & Aila, T. (2018). A Style-Based generator architecture for generative adversarial networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1812.04948
  • Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2019). Analyzing and improving the image quality of StyleGAN. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1912.04958
  • Kim, J., Lee, S., & Kang, S. (2021). End-to-End differentiable learning to HDR image synthesis for multi-exposure images. Proceedings of the AAAI Conference on Artificial Intelligence, 35(2), 1780–1788. https://doi.org/10.1609/aaai.v35i2.16272
  • Kingma, D. P., & Welling, M. (2013). Auto-Encoding variational Bayes. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1312.6114
  • Li, B., Qi, X., Lukasiewicz, T., & Torr, P. H. S. (2019). Controllable Text-to-Image generation. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1909.07083
  • Li, C., & Wand, M. (2016). Combining Markov random fields and convolutional neural networks for image synthesis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1601.04589
  • Liu, M., & Tuzel, O. (2016). Coupled generative adversarial networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1606.07536
  • Lu, Z., Li, Z., Cao, J., He, R., & Sun, Z. (2017). Recent progress of face image synthesis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1706.04717
  • Mikołajczyk, A., & Grochowski, M. (2019). Style transfer-based image synthesis as an efficient regularization technique in deep learning. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1905.10974
  • Mirza, M., & Osindero, S. (2014). Conditional generative adversarial Nets. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1411.1784
  • Nie, D., Trullo, R., Lian, J., Wang, L., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2018). Medical Image Synthesis with Deep Convolutional Adversarial Networks. IEEE Transactions on Biomedical Engineering, 65(12), 2720–2730. https://doi.org/10.1109/tbme.2018.2814538
  • Nikolaev, M., Kuznetsov, M., Vetrov, D., & Alanov, A. (2024). HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2404.01094
  • Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context Encoders: Feature learning by inpainting. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1604.07379
  • Pektas, M., Gecer, B., & Ugur, A. (2022). Efficient Hair Style Transfer with Generative Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2210.12524
  • Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1511.06434
  • Rojas-Gomez, R. A., Yeh, R. A., Do, M. N., & Nguyen, A. (2021). Inverting adversarially robust networks for image synthesis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2106.06927
  • Sarkar, K., Golyanik, V., Liu, L., & Theobalt, C. (2021). Style and Pose Control for Image Synthesis of Humans from a Single Monocular View. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2102.11263
  • Tsirikoglou, A., Eilertsen, G., & Unger, J. (2020a). A survey of image Synthesis Methods for Visual Machine Learning. Computer Graphics Forum, 39(6), 426–451. https://doi.org/10.1111/cgf.14047
  • Tsirikoglou, A., Eilertsen, G., & Unger, J. (2020b). A survey of image Synthesis Methods for Visual Machine Learning. Computer Graphics Forum, 39(6), 426–451. https://doi.org/10.1111/cgf.14047
  • Van Den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1601.06759
  • Vondrick, C., Pirsiavash, H., & Torralba, A. (2016). Generating Videos with Scene Dynamics. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1609.02612
  • Wang, L., Chen, W., Yang, W., Bi, F., & Yu, F. R. (2020). A State-of-the-Art Review on image synthesis with generative adversarial networks. IEEE Access, 8, 63514–63537. https://doi.org/10.1109/access.2020.2982224
  • Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., & Catanzaro, B. (2017). High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1711.11585
  • Wang, X., & Gupta, A. (2016). Generative Image Modeling using Style and Structure Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1603.05631
  • Xian, W., Sangkloy, P., Agrawal, V., Raj, A., Lu, J., Fang, C., Yu, F., & Hays, J. (2017). TextureGAN: Controlling Deep Image Synthesis with Texture Patches. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1706.02823
  • Zhan, F., Yu, Y., Wu, R., Zhang, J., Lu, S., Liu, L., Kortylewski, A., Theobalt, C., & Xing, E. (2021). Multimodal image Synthesis and Editing: the Generative AI Era. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2112.13592
  • Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. (2017). StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1710.10916
  • Zhang, M., & Zheng, Y. (2018). Hair-GANs: Recovering 3D Hair Structure from a Single Image. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1811.06229
  • Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1801.03924
  • Zhao, J. J., Mathieu, M., & LeCun, Y. (2016). Energy-based generative adversarial network. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1609.03126.
  • Zhu, J., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1703.10593
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Generative Adversarial Networks (GANs) Image-to-Image Translation Encoder-Based Approach StyleGAN Pose Alignment Shape and Color Alignment Image Synthesis

Powered by PhDFocusTM