Research Article

Harnessing Data Science and Machine Learning for Strategic Business Decision-Making in Multi-Channel Retail Environments

by  Rasel Sordar, Iffat Ara, Sadia Afrin Khan, Khaled Bin Showkot Tanim, Nazmul Hossain, Md Zihad Monsur
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 66
Published: December 2025
Authors: Rasel Sordar, Iffat Ara, Sadia Afrin Khan, Khaled Bin Showkot Tanim, Nazmul Hossain, Md Zihad Monsur
10.5120/ijca2025926108
PDF

Rasel Sordar, Iffat Ara, Sadia Afrin Khan, Khaled Bin Showkot Tanim, Nazmul Hossain, Md Zihad Monsur . Harnessing Data Science and Machine Learning for Strategic Business Decision-Making in Multi-Channel Retail Environments. International Journal of Computer Applications. 187, 66 (December 2025), 9-16. DOI=10.5120/ijca2025926108

                        @article{ 10.5120/ijca2025926108,
                        author  = { Rasel Sordar,Iffat Ara,Sadia Afrin Khan,Khaled Bin Showkot Tanim,Nazmul Hossain,Md Zihad Monsur },
                        title   = { Harnessing Data Science and Machine Learning for Strategic Business Decision-Making in Multi-Channel Retail Environments },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 66 },
                        pages   = { 9-16 },
                        doi     = { 10.5120/ijca2025926108 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Rasel Sordar
                        %A Iffat Ara
                        %A Sadia Afrin Khan
                        %A Khaled Bin Showkot Tanim
                        %A Nazmul Hossain
                        %A Md Zihad Monsur
                        %T Harnessing Data Science and Machine Learning for Strategic Business Decision-Making in Multi-Channel Retail Environments%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 66
                        %P 9-16
                        %R 10.5120/ijca2025926108
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In the cutthroat modern retail environment, strategic decision-making is increasingly driven by intelligent data usage. This research investigates how data science and ML can be leveraged to enhance critical business processes in multi-channel retail settings that include online, in-store, and social commerce platforms. An integrated framework comprising predictive modeling, customer segmentation, promotion response analysis, and dynamic pricing has been used in this research to demonstrate how machine learning enhances business intelligence and improves operational performance. A thorough analysis pipeline in Python was developed with models such as Random Forest, XGBoost, K-Means, LSTM, and Q-learning. Results showed significant enhancement in the accuracy of forecasts, R² = 0.93; efficiency of marketing, AUC = 0.91; and inventory optimization, MAPE = 6.2%. Feature importance analysis further showed that customer engagement and discount sensitivity are key drivers of revenue performance. The study concludes that integrating analytics driven by ML into strategic retail management empowers better-informed, agile, and profitable decision-making, placing data-driven intelligence at the heart of sustainable retail competitiveness.

References
  • Brynjolfsson, E., & McElheran, K. (2019). Data in action: Data-driven decision making in U.S. manufacturing. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3522645
  • Chen, H., Chiang, R. H., & Storey, V. C. (2021). Business intelligence and analytics: From big data to impact. MIS Quarterly, 45(1), 1–23. https://doi.org/10.25300/MISQ/2021/15300
  • Chong, A. Y. L., Liu, M. J., Luo, J., & Keng-Boon, O. (2017). Predicting online product sales via online reviews, sentiments, and promotion strategies: A big data architecture and neural network approach. International Journal of Operations & Production Management, 37(11), 1056–1078. https://doi.org/10.1108/IJOPM-03-2016-0120
  • Davenport, T. H., & Harris, J. G. (2017). Competing on analytics: The new science of winning. Harvard Business Review Press.
  • Grewal, D., Roggeveen, A. L., & Nordfält, J. (2020). The future of retailing. Journal of Retailing, 96(1), 69–76. https://doi.org/10.1016/j.jretai.2019.12.001
  • Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
  • Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2021). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and e-Business Management, 19(3), 389–421. https://doi.org/10.1007/s10257-020-00489-7
  • Nguyen, T. H., Simkin, L., & Canhoto, A. (2022). The dark side of digital personalization: An agenda for research and practice. Journal of Business Research, 146, 970–982. https://doi.org/10.1016/j.jbusres.2022.03.053
  • Provost, F., & Fawcett, T. (2013). Data science for business: What you need to know about data mining and data-analytic thinking. O’Reilly Media.
  • Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2020). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
  • Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
  • Akter, S., Bandara, R., Hossain, M. N., Wamba, S. F., Foropon, C., & Papadopoulos, T. (2021). Analytics-based decision-making for service systems: A qualitative study and agenda for future research. International Journal of Information Management, 57, 102122. https://doi.org/10.1016/j.ijinfomgt.2020.102122
  • Blazquez, M. (2014). Fashion shopping in multichannel retail: The role of technology in enhancing the customer experience. International Journal of Electronic Commerce, 18(4), 97–116. https://doi.org/10.2753/JEC1086-4415180404
  • Brynjolfsson, E., & McElheran, K. (2019). Data in action: Data-driven decision making in U.S. manufacturing. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3522645
  • Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188.
  • Chong, A. Y. L., Liu, M. J., Luo, J., & Keng-Boon, O. (2017). Predicting online product sales via online reviews, sentiments, and promotion strategies. International Journal of Operations & Production Management, 37(11), 1056–1078. https://doi.org/10.1108/IJOPM-03-2016-0120
  • Davenport, T. H., & Harris, J. G. (2017). Competing on analytics: The new science of winning. Harvard Business Review Press.
  • Grewal, D., Roggeveen, A. L., & Nordfält, J. (2020). The future of retailing. Journal of Retailing, 96(1), 69–76. https://doi.org/10.1016/j.jretai.2019.12.001
  • Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
  • Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data: A taxonomy of data-driven business models. International Journal of Operations & Production Management, 36(10), 1382–1406.
  • Huang, M. H., & Rust, R. T. (2021). Artificial intelligence in service. Journal of Service Research, 24(1), 3–14. https://doi.org/10.1177/1094670520902266
  • Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  • Kumar, V., Dixit, A., Javalgi, R. G., Dass, M., & Dass, P. (2019). Digital transformation of retailing: A conceptual framework. Journal of Retailing and Consumer Services, 52, 101923. https://doi.org/10.1016/j.jretconser.2019.101923
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Li, L., Zheng, L., Yang, F., & Li, T. (2020). A reinforcement learning-based dynamic pricing algorithm for e-commerce. Electronic Commerce Research and Applications, 41, 100977. https://doi.org/10.1016/j.elerap.2019.100977
  • McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.
  • Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2020). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and e-Business Management, 18(3), 547–578.
  • Nguyen, T. H., Simkin, L., & Canhoto, A. (2022). The dark side of digital personalization. Journal of Business Research, 146, 970–982. https://doi.org/10.1016/j.jbusres.2022.03.053
  • Piotrowicz, W., & Cuthbertson, R. (2019). Introduction to the special issue: Information management in retail. International Journal of Information Management, 47, 153–156.
  • Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70, 263–286.
  • Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From multi-channel retailing to omnichannel retailing. Journal of Retailing, 91(2), 174–181. https://doi.org/10.1016/j.jretai.2015.02.005
  • Voigt, P., & Von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR): A practical guide. Springer.
  • Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2017). How ‘big data’ can make big impact. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.034
  • Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2020). Big data analytics in logistics and supply chain management. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
  • Zhang, Z., Zhao, K., & Xu, H. (2020). Customer segmentation using machine learning in retail. Decision Support Systems, 136, 113364. https://doi.org/10.1016/j.dss.2020.113364
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Data Science; Machine Learning; Multi-Channel Retail; Predictive Analytics; Customer Segmentation; Dynamic Pricing; Business Intelligence; Strategic Decision-Making; Big Data; Artificial Intelligence

Powered by PhDFocusTM