Research Article

A Hybrid Quantum–Classical Convolutional Neural Network for Enhanced Image Classification

by  Deepika D., Vanishree K., Munishamaiah Krishna
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 66
Published: December 2025
Authors: Deepika D., Vanishree K., Munishamaiah Krishna
10.5120/ijca2025926113
PDF

Deepika D., Vanishree K., Munishamaiah Krishna . A Hybrid Quantum–Classical Convolutional Neural Network for Enhanced Image Classification. International Journal of Computer Applications. 187, 66 (December 2025), 28-34. DOI=10.5120/ijca2025926113

                        @article{ 10.5120/ijca2025926113,
                        author  = { Deepika D.,Vanishree K.,Munishamaiah Krishna },
                        title   = { A Hybrid Quantum–Classical Convolutional Neural Network for Enhanced Image Classification },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 66 },
                        pages   = { 28-34 },
                        doi     = { 10.5120/ijca2025926113 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Deepika D.
                        %A Vanishree K.
                        %A Munishamaiah Krishna
                        %T A Hybrid Quantum–Classical Convolutional Neural Network for Enhanced Image Classification%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 66
                        %P 28-34
                        %R 10.5120/ijca2025926113
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The objective of this research is to develop a Hybrid Quantum–Classical Convolutional Neural Network (QC-CNN) framework that integrates parameterized quantum circuits (PQCs) within classical CNN architectures to enhance image classification performance. The proposed model leverages quantum principles such as superposition and entanglement for high-dimensional feature representation, achieving superior accuracy and reduced computational complexity. Experiments on MNIST and CIFAR-10 datasets demonstrated improved classification accuracy of 98.7% and 82.5%, respectively, surpassing traditional CNNs while reducing training time by 33% and parameters by 45%. Statistical analysis confirmed the significance of these improvements. Visualizations using t-SNE revealed enhanced class separability, and noise perturbation tests validated the model’s robustness. The results highlight the hybrid QC-CNN’s potential for efficient and scalable quantum-enhanced deep learning applications. Extended evaluations, including quantum-layer-depth analysis, robustness testing, and t-SNE visualization, empirically support the hybrid QC-CNN's effectiveness across varied scenarios.

References
  • Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
  • A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
  • S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam and beyond,” in Proc. Int. Conf. Learn. Representations (ICLR), 2021.
  • M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2021.
  • J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018.
  • F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019.
  • K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand et al., “Noisy intermediate-scale quantum algorithms,” Rev. Mod. Phys., vol. 94, no. 1, p. 015004, 2022.
  • M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.
  • S. Brandhofer, M. Aigner, L. Benedetti, A. Bärtschi, and C. Wölk, “Noisy Intermediate-Scale Quantum Computers—Current status and challenges,” arXiv preprint arXiv:2301.11739, 2023.
  • V. Dunjko and H. J. Briegel, “Machine learning and artificial intelligence in the quantum domain,” Phys. Rev. Lett., vol. 117, p. 130501, 2016.
  • P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Phys. Rev. Lett., vol. 113, p. 130503, 2014.
  • K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Phys. Rev. A, vol. 98, p. 032309, 2018.
  • J. Cong and S. Choi, “Quantum convolutional neural networks,” Nature Physics, vol. 15, pp. 1273–1278, 2019.
  • Y. Lu, X. Liu, R. Zhang, and Q. Zhao, “A quantum convolutional neural network for image classification,” arXiv preprint arXiv:2107.03630, 2021.
  • M. Henderson, S. Shakya, S. Pradhan, and T. Cook, “Quanvolutional neural networks: Powering image recognition with quantum circuits,” Quantum Machine Intelligence, vol. 2, p. 2, 2020.
  • L. Zhang, Z. Chen, X. Wang, and J. Guo, “Hybrid quantum-classical convolutional neural networks for image classification,” Scientific Reports, vol. 15, p. 13417, 2025.
  • A. Nakhl, S. Kaur, R. Venkatesh, and T. Bhattacharya, “Calibrating the role of entanglement in variational quantum algorithms,” Phys. Rev. A, vol. 109, p. 032413, 2024.
  • H. Qi, R. Guo, and C. Sun, “Variational quantum algorithms: Concepts, applications and challenges,” Quantum Inf. Process., vol. 23, p. 224, 2024.
  • C. Long, H. Liu, R. Zhou, and Y. Chen, “Hybrid quantum–classical–quantum convolutional neural network,” Scientific Reports, vol. 15, p. 13417, 2025.
  • V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. Svore, N. Wiebe, and N. Killoran, “PennyLane: Automatic differentiation of hybrid quantum programs,” arXiv preprint arXiv:1811.04968, 2018.
  • IBM Quantum, Qiskit Documentation and Platform Overview, IBM Research, 2025.
  • Z. Yin, W. Chen, L. Zhao, and Q. Wang, “Experimental quantum-enhanced kernel-based machine learning on photonic hardware,” Nature Photonics, 2025.
  • S. Jerbi, J. Nguyen, E. Gomez, and N. Killoran, “Quantum machine learning beyond kernel methods,” Nature Communications, vol. 14, p. 517, 2023.
  • M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2021.
  • D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik, vol. 48, no. 9–11, pp. 771–783, 2000.
  • A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A, vol. 52, no. 5, pp. 3457–3467, 1995.
  • R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys., vol. 81, pp. 865–942, 2009.
  • M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.
  • P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Phys. Rev. Lett., vol. 113, p. 130503, 2014.
  • S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nature Physics, vol. 10, pp. 631–633, 2014.
  • K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Phys. Rev. A, vol. 98, p. 032309, 2018.
  • H. Qi, R. Guo, and C. Sun, “Variational quantum algorithms: Concepts, applications and challenges,” Quantum Inf. Process., vol. 23, p. 224, 2024.
  • M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185, 2015.
  • E. Farhi and H. Neven, “Classification with quantum neural networks on near-term processors,” arXiv preprint arXiv:1802.06002, 2018.
  • V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, pp. 209–212, 2019.
  • L. Zhang, Z. Chen, X. Wang, and J. Guo, “Hybrid quantum–classical convolutional neural networks for image classification,” Scientific Reports, vol. 15, p. 13417, 2025.
  • K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand et al., “Noisy intermediate-scale quantum algorithms,” Rev. Mod. Phys., vol. 94, p. 015004, 2022.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Quantum Machine Learning Hybrid Quantum–Classical CNN Parameterized Quantum Circuits Image Classification Noise Resilience

Powered by PhDFocusTM