Research Article

Dynamic Functional Connectivity Patterns in Resting-State EEG for Classifying Learning Strategies

by  Si Thu Aung, Khin Muyar Kyaw, Kyaw Kyaw Oo, Aung Cho Oo, Kyawt Kyawt Zin, Nei Rin Zara Lwin, Thura Tun
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 64
Published: December 2025
Authors: Si Thu Aung, Khin Muyar Kyaw, Kyaw Kyaw Oo, Aung Cho Oo, Kyawt Kyawt Zin, Nei Rin Zara Lwin, Thura Tun
10.5120/ijca2025926070
PDF

Si Thu Aung, Khin Muyar Kyaw, Kyaw Kyaw Oo, Aung Cho Oo, Kyawt Kyawt Zin, Nei Rin Zara Lwin, Thura Tun . Dynamic Functional Connectivity Patterns in Resting-State EEG for Classifying Learning Strategies. International Journal of Computer Applications. 187, 64 (December 2025), 10-13. DOI=10.5120/ijca2025926070

                        @article{ 10.5120/ijca2025926070,
                        author  = { Si Thu Aung,Khin Muyar Kyaw,Kyaw Kyaw Oo,Aung Cho Oo,Kyawt Kyawt Zin,Nei Rin Zara Lwin,Thura Tun },
                        title   = { Dynamic Functional Connectivity Patterns in Resting-State EEG for Classifying Learning Strategies },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 64 },
                        pages   = { 10-13 },
                        doi     = { 10.5120/ijca2025926070 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Si Thu Aung
                        %A Khin Muyar Kyaw
                        %A Kyaw Kyaw Oo
                        %A Aung Cho Oo
                        %A Kyawt Kyawt Zin
                        %A Nei Rin Zara Lwin
                        %A Thura Tun
                        %T Dynamic Functional Connectivity Patterns in Resting-State EEG for Classifying Learning Strategies%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 64
                        %P 10-13
                        %R 10.5120/ijca2025926070
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Dynamic functional connectivity (dFC) captures temporal variations in brain network interactions, offering deeper insights into cognitive processes compared to static connectivity measures. This study proposes a novel framework for classifying different learning strategies—control, active, and passive—using resting-state electroencephalography (EEG). Resting-state EEG data from twenty-one participants were preprocessed and analyzed using the Phase Lag Index (PLI) to compute functional connectivity across 18 EEG channels. Dynamic connectivity matrices were generated using sliding-window correlations, and their upper-triangular elements were vectorized to obtain subject-specific dFC features. Euclidean distance and multidimensional scaling (MDS) were applied for dimensionality reduction before classification. Statistical analyses, including paired and Welch’s t-tests with Bonferroni correction, revealed significant within- and between-group differences (p < 10⁻⁸). Machine learning models—K-Nearest Neighbors (KNN) and Random Forest (RF)—achieved classification accuracies exceeding 80% and 70%, respectively, in distinguishing both within- and between-group patterns. These findings demonstrate that dFC features from resting-state EEG can effectively differentiate learning strategies, reflecting distinct neural reorganization patterns associated with cognitive engagement. The proposed framework provides a foundation for exploring EEG-based biomarkers of cognitive processes and potential applications in educational neuroscience and clinical diagnostics.

References
  • Allen, E. A., Damaraju, E., Eichele, T., Wu, L., & Calhoun, V. D. (2018). EEG signatures of dynamic functional network connectivity states. Brain topography, 31(1), 101-116.
  • Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 81-98.
  • Sakoğlu, Ü., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5), 351-366.
  • Gonzalez-Castillo, J., Handwerker, D. A., Robinson, M. E., Hoy, C. W., Buchanan, L. C., Saad, Z. S., & Bandettini, P. A. (2014). The spatial structure of resting state connectivity stability on the scale of minutes. Frontiers in neuroscience, 8, 138.
  • Keilholz, S. D., Magnuson, M. E., Pan, W. J., Willis, M., & Thompson, G. J. (2013). Dynamic properties of functional connectivity in the rodent. Brain connectivity, 3(1), 31-40.
  • Chen, C., Xu, S., Zhou, J., Yi, C., Yu, L., Yao, D., ... & Xu, P. (2025). Resting-state EEG network variability predicts individual working memory behavior. NeuroImage, 310, 121120.
  • Zhang, D. W., Zaphf, A., & Klingberg, T. (2021). Resting state EEG related to mathematical improvement after spatial training in children. Frontiers in Human Neuroscience, 15, 698367.
  • Godfrey, K., Muthukumaraswamy, S. D., Stinear, C. M., & Hoeh, N. R. (2024). Resting-state EEG connectivity recorded before and after rTMS treatment in patients with treatment-resistant depression. Psychiatry Research: Neuroimaging, 338, 111767.
  • Chen, H., Lei, Y., Li, R., Xia, X., Cui, N., Chen, X., ... & Zhou, J. (2024). Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia. Molecular Psychiatry, 29(4), 1088-1098.
  • Gschwandtner, U., Bogaarts, G., Chaturvedi, M., Hatz, F., Meyer, A., Fuhr, P., & Roth, V. (2021). Dynamic Functional Connectivity of EEG: From Identifying Fingerprints to Gender Differences to a General Blueprint for the Brain's Functional Organization. Frontiers in Neuroscience, 15, 683633.
  • Mishra, S., Srinivasan, N., & Tiwary, U. S. (2022). Dynamic functional connectivity of emotion processing in beta band with naturalistic emotion stimuli. Brain sciences, 12(8), 1106.
  • Paloma Victoria de Sales Alves, Antonio Simeão Sobrinho Neto, and Carla Alexandra da Silva Moita Minervino (2025). Resting-state EEG before and after different study methods. OpenNeuro. [Dataset] doi: doi:10.18112/openneuro.ds006801.v1.0.0
  • Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data–a practical approach. Journal of neuroscience methods, 250, 34-46.
  • Chella, F., Pizzella, V., Zappasodi, F., & Marzetti, L. (2016). Impact of the reference choice on scalp EEG connectivity estimation. Journal of neural engineering, 13(3), 036016.
  • Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163-178.
  • Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human brain mapping, 28(11), 1178-1193.
  • Kschischang, F. R. (2006). The hilbert transform. University of Toronto, 83, 277.
  • Long, Z., Liu, X., Niu, Y., Shang, H., Lu, H., Zhang, J., & Yao, L. (2023). Improved dynamic functional connectivity estimation with an alternating hidden Markov model. Cognitive Neurodynamics, 17(5), 1381-1398.
  • Dodero, L., Sona, D., Meskaldji, D. E., Murino, V., & Van De Ville, D. (2016, April). Traces of human functional activity: Moment-to-moment fluctuations in fMRI data. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 1307-1310). IEEE.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

EEG dynamic functional connectivity resting state study methods multidimensional scaling

Powered by PhDFocusTM