Research Article

Evaluation of a Platform that Optimizes User Interaction Real-Time Google Trends-Based AI Blog

by  Pavan K. Kommi, Sai V. Avula, Ankita Maharjan, Suhair Amer
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 50
Published: October 2025
Authors: Pavan K. Kommi, Sai V. Avula, Ankita Maharjan, Suhair Amer
10.5120/ijca2025925876
PDF

Pavan K. Kommi, Sai V. Avula, Ankita Maharjan, Suhair Amer . Evaluation of a Platform that Optimizes User Interaction Real-Time Google Trends-Based AI Blog. International Journal of Computer Applications. 187, 50 (October 2025), 67-74. DOI=10.5120/ijca2025925876

                        @article{ 10.5120/ijca2025925876,
                        author  = { Pavan K. Kommi,Sai V. Avula,Ankita Maharjan,Suhair Amer },
                        title   = { Evaluation of a Platform that Optimizes User Interaction Real-Time Google Trends-Based AI Blog },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 50 },
                        pages   = { 67-74 },
                        doi     = { 10.5120/ijca2025925876 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Pavan K. Kommi
                        %A Sai V. Avula
                        %A Ankita Maharjan
                        %A Suhair Amer
                        %T Evaluation of a Platform that Optimizes User Interaction Real-Time Google Trends-Based AI Blog%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 50
                        %P 67-74
                        %R 10.5120/ijca2025925876
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper evaluates the Radiorogue platform [1], which generates real-time content with AI and Google Trends. Inspired by Human-Computer Interaction (HCI) concepts, the design emphasizes user-centered strategies to provide intuitive and efficient interface. To effectively fulfill the demands of users, the process includes gathering requirements, iterative prototyping, and usability testing. Key strategies include simplifying navigation, increasing content discoverability, and minimizing cognitive burden, allowing for seamless exploration of popular AI-generated blogs. By prioritizing real-time performance, rapid content delivery, and cost-effectiveness this platform provides responsive and scalable user experience.

References
  • https://www.Radiorogue.com accessed October 2024
  • Sharma, V., & Tiwari, A. K. (2021). A Study on User Interface and User Experience Designs and its Tools. World Journal of Research and Review, 12(6), 41-44.
  • Chen, L. C. (2020). A Study of Optimizing Search Engine Results Through User Interaction. IEEE Access, 8, 79089-79098. https://doi.org/10.1109/ACCESS.2020.2990972
  • Wittenberg, C., Epstein, Z., Berinsky, A. J., & Rand, D. G. (2023). Labeling AI-Generated Content: Promises, Perils, and Future Directions. MIT Artificial Intelligence Policy Forum.
  • Ziakis, C., & Vlachopoulou, M. (2024). Artificial Intelligence’s Revolutionary Role in Search Engine Optimization. In A. Kavoura et al. (Eds.), Strategic Innovative Marketing and Tourism. Springer Proceedings in Business and Economics. https://doi.org/10.1007/978-3-031-51038-0_43
  • Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a New Academic Reality: AI-Written Research Papers and the Ethics of the Large Language Models in Scholarly Publishing. Journal of the Association for Information Science and Technology.
  • Aishwarya C., Venkatesan M., & Prabhavathy P. (2023). Effects of User Behavior in the Propagation of Fake News on Social Media. In 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON) (pp. 1-7). IEEE. https://doi.org/10.1109/SMARTGENCON60755.2023.10441909
  • Kowalczyk, K., & Szandala, T. (2024). Enhancing SEO in Single-Page Web Applications in Contrast With Multi-Page Applications. IEEE Access, 12, 11597–11614. https://doi.org/10.1109/ACCESS.2024.3355740
  • Fergusson, G., Fitzgerald, C., Frascella, C., Iorio, M., McBrien, T., Schroeder, C., Winters, B., & Zhou, E. (2023). Generative AI’s Impact & Paths Forward. Electronic Privacy Information Center (EPIC).
  • Gunasekaran, K. P. (2023). Exploring Sentiment Analysis Techniques in Natural Language Processing: A Comprehensive Review. arXiv:2305.14842 [cs.CL]. https://doi.org/10.48550/arXiv.2305.14842
  • Rayhan, A. (2024). Exploring the Power of Google Trends: Applications, Limitations, and Future Directions. CBECL. https://doi.org/10.13140/RG.2.2.26330.76487
  • Choi, H., & Varian, H. (2009). Predicting the Present with Google Trends. Google Inc..
  • Werzansky-Orland, Y. (2024). AI-generated content and the question of copyright. International Journal of Business Research, 5, 2-20.
  • Hristov, K. (2017). Artificial Intelligence and the Copyright Dilemma. IDEA - The Journal of the Franklin Pierce Center for Intellectual Property, 57, 431-454.
  • Singh, S. K., Singh, A., Tiwari, A., Kumar, M., & Chauhan, C. (2023). Plagiarism Checker using tf-idf, cosine similarity and jaccard similarity. International Journal of Novel Research and Development, 8(5), 667-672.
  • O’Brien, H. L. (2011). Exploring user engagement in online news interactions. Proceedings of the American Society for Information Science and Technology, 48(1), 1-10. https://doi.org/10.1002/meet.2011.14504801088
  • Devarapalli, C. A. (2023). Search Engine Optimization (SEO): Elevating Frontend Code for Better Rankings. International Journal of Science and Research, 12(9).
  • Sindhura, K. (2023). Sentiment Analysis using Natural Language Processing and Machine Learning. Journal of Data Acquisition and Processing, 38(2), 520. https://doi.org/10.5281/zenodo.7766376
  • Mishra, A. R., Panchal, V. K., & Kumar, P. (2020). Similarity Search based on Text Embedding Model for detection of Near Duplicates. International Journal of Grid and Distributed Computing, 13(2), 1871-1881.
  • Xu, W., Dainoff, M. J., Ge, L., & Gao, Z. (2023). Transitioning to Human Interaction with AI Systems: New Challenges and Op- portunities for HCI Professionals to Enable Human-Centered AI. International Journal of Human-Computer Interaction, 39(3), 494-518. https://doi.org/10.1080/10447318.2022.2041900
  • Giummolè, F., Orlando, S., & Tolomei, G. (2013). Trending Topics on Twitter Improve the Prediction of Google Hot Queries. In 2013 International Conference on Social Computing (pp. 39-44). IEEE. https://doi.org/10.1109/SocialCom.2013.12.
  • HubSpot Marketing Hub accessed October 2025
  • AI Content Writer for Blogs, SEO & Copywriting | GravityWrite accessed October 25
  • upGrowth: AI-Powered Digital Marketing & SEO Solutions accessed October 25.
  • RightBlogger: Automated Blogging Tools for SEO & LLM Traffic accessed October 25.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

AI-Generated Blogs Google Trends Human-Computer Interaction (HCI) User-Centered Design

Powered by PhDFocusTM