Research Article

Data-Driven Optimization of TiO2 Sol-Gel Synthesis: Insights from Statistical and Machine Learning Approaches

by  Gladys Egyir, Terfa Jude Igba, Henry Makinde, Victor Stanley Francis, Jeffrey Christian Ayerh, Frederick Adrah, Dennis Opoku Boakye
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 49
Published: October 2025
Authors: Gladys Egyir, Terfa Jude Igba, Henry Makinde, Victor Stanley Francis, Jeffrey Christian Ayerh, Frederick Adrah, Dennis Opoku Boakye
10.5120/ijca2025925846
PDF

Gladys Egyir, Terfa Jude Igba, Henry Makinde, Victor Stanley Francis, Jeffrey Christian Ayerh, Frederick Adrah, Dennis Opoku Boakye . Data-Driven Optimization of TiO2 Sol-Gel Synthesis: Insights from Statistical and Machine Learning Approaches. International Journal of Computer Applications. 187, 49 (October 2025), 62-66. DOI=10.5120/ijca2025925846

                        @article{ 10.5120/ijca2025925846,
                        author  = { Gladys Egyir,Terfa Jude Igba,Henry Makinde,Victor Stanley Francis,Jeffrey Christian Ayerh,Frederick Adrah,Dennis Opoku Boakye },
                        title   = { Data-Driven Optimization of TiO2 Sol-Gel Synthesis: Insights from Statistical and Machine Learning Approaches },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 49 },
                        pages   = { 62-66 },
                        doi     = { 10.5120/ijca2025925846 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Gladys Egyir
                        %A Terfa Jude Igba
                        %A Henry Makinde
                        %A Victor Stanley Francis
                        %A Jeffrey Christian Ayerh
                        %A Frederick Adrah
                        %A Dennis Opoku Boakye
                        %T Data-Driven Optimization of TiO2 Sol-Gel Synthesis: Insights from Statistical and Machine Learning Approaches%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 49
                        %P 62-66
                        %R 10.5120/ijca2025925846
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Titanium dioxide (TiO₂) is used extensively in products from pigments and sunscreens to optical components. The sol–gel synthesis of TiO₂ is controlled by an intricate set of interactive parameters of which optimization is an important issue. A set of 290 experimental conditions was studied in detail to model and optimize yield of TiO₂ by means of statistical and machine learning methodologies. Out of the methodologies studied, polynomial regression and optimized random forest models showed best predictive capability achieving coefficient of determination (R²) of 0.9522 and 0.9314, respectively, in comparison to linear regression. Feature importance analysis identified precursor concentration and hydrolysis ratio (water-to-precursor ratio) to play key role by having predominant influence, with secondary influence being aging time and pH. The paper highlights the value of data-based methodologies for synthesis design guidance, improved reproducibility, and expedited advances in materials chemistry.

References
  • Chen, X., & Selloni, A. (2014). Introduction: titanium dioxide (TiO2) nanomaterials. Chemical reviews, 114(19), 9281-9282.
  • Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical society reviews, 35(7), 583-592.
  • Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(7), 2891-2959.
  • Liu, L., & Chen, X. (2014). Titanium dioxide nanomaterials: self-structural modifications. Chemical reviews, 114(19), 9890-9918.
  • Meuwly, M. (2021). Machine learning for chemical reactions. Chemical Reviews, 121(16), 10218-10239.
  • Adrah, F. A., Mottey, B. E., & Nyavor, H. (2024). The landscape of artificial intelligence applications in health information systems. Int. J. Comput. Appl., 975, 8887.
  • Agboklu, M., Adrah, F. A., & Agbenyo, P. M. (2024). Hope Nyavor. From bits to atoms: machine learning and nanotechnology for cancer therapy. Journal of Nanotechnology Research, 6, 16-26.
  • Nayebzadeh, H., Rohani, A., Sistani, A., Hassanpour, A., & Gardy, J. (2022). Modelling and optimisation of the sol-gel conditions for synthesis of semi-hexagonal titania-based nano-catalyst for esterification reaction. Catalysts, 12(2), 239.
  • Alayou, S., Mengesha, M., & Tizazu, G. (2025). Application of machine learning models for predicting zinc oxide nanoparticle size. Measurement, 117785.
  • Demirci, S., Şahin, D. Ö., & Demirci, S. (2025). Design of the amorphous/crystalline TiO2 nanocomposites via machine learning for photocatalytic applications. Materials Science in Semiconductor Processing, 192, 109460.
  • Karatchevtseva, I., Cassidy, D. J., Zhang, Z., Triani, G., Finnie, K. S., Cram, S. L., ... & Bartlett, J. R. (2008). Crystallization of TiO2 powders and thin films prepared from modified titanium alkoxide precursors. Journal of the American Ceramic Society, 91(6), 2015-2023
  • Hanaor, D. A., Chironi, I., Karatchevtseva, I., Triani, G., & Sorrell, C. C. (2012). Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide. Advances in Applied Ceramics, 111(3), 149-158.
  • Guo, W., Lin, Z., Wang, X., & Song, G. (2003). Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectronic Engineering, 66(1-4), 95-101
  • Karino, S., & Hojo, J. (2010). Synthesis and characterization of TiO2-coated SiO2 particles by hydrolysis of titanium alkoxide in alcohol solvents. Journal of the Ceramic Society of Japan, 118(1379), 591-596.
  • Jasbi, N. E., & Dorranian, D. (2016). Effect of aging on the properties of TiO2 nanoparticle. Journal of Theoretical and Applied Physics, 10(3), 157-161.
  • Hsiang, H. I., & Lin, S. C. (2004). Effects of aging on the phase transformation and sintering properties of TiO2 gels. Materials Science and Engineering: A, 380(1-2), 67-72.
  • Aida, I. S., & Sreekantan, S. (2011). Effect of pH on TiO2 nanoparticles via sol-gel method. Advanced Materials Research, 173, 184-189.
  • Yalcin, M. (2022). The effect of pH on the physical and structural properties of TiO2 nanoparticles. Journal of Crystal Growth, 585, 126603.
  • Chen, Y. F., Lee, C. Y., Yeng, M. Y., & Chiu, H. T. (2003). The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of crystal growth, 247(3-4), 363-370
  • Hu, L., Yoko, T., Kozuka, H., & Sakka, S. (1992). Effects of solvent on properties of sol—gel-derived TiO2 coating films. Thin solid films, 219(1-2), 18-23.
  • Rao, Y., Antalek, B., Minter, J., Mourey, T., Blanton, T., Slater, G., ... & Fornalik, J. (2009). Organic solvent-dispersed TiO2 nanoparticle characterization. Langmuir, 25(21), 12713-12720.
  • Kojima, T., & Sugimoto, T. (2008). Formation mechanism of amorphous TiO2 spheres in organic solvents 3. Effects of water, temperature, and solvent composition. The Journal of Physical Chemistry C, 112(47), 18445-18454.
  • Mohammadi, S., Harvey, A., & Boodhoo, K. V. (2014). Synthesis of TiO2 nanoparticles in a spinning disc reactor. Chemical Engineering Journal, 258, 171-184.
  • Adrah, F. A., Denu, M. K., & Buadu, M. A. E. (2023). Nanotechnology applications in healthcare with emphasis on sustainable COVID-19 management. J Nanotechnol Res, 5, 6-13.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Machine Learning Materials Synthesis

Powered by PhDFocusTM