Research Article

Mining Emotions from Tweets: Sentiment Patterns During the COVID-19 Pandemic

by  Tamilchudar R., B. Sendilkumar, Srividhya K., Manimannan G.
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 46
Published: October 2025
Authors: Tamilchudar R., B. Sendilkumar, Srividhya K., Manimannan G.
10.5120/ijca2025925778
PDF

Tamilchudar R., B. Sendilkumar, Srividhya K., Manimannan G. . Mining Emotions from Tweets: Sentiment Patterns During the COVID-19 Pandemic. International Journal of Computer Applications. 187, 46 (October 2025), 53-59. DOI=10.5120/ijca2025925778

                        @article{ 10.5120/ijca2025925778,
                        author  = { Tamilchudar R.,B. Sendilkumar,Srividhya K.,Manimannan G. },
                        title   = { Mining Emotions from Tweets: Sentiment Patterns During the COVID-19 Pandemic },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 46 },
                        pages   = { 53-59 },
                        doi     = { 10.5120/ijca2025925778 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Tamilchudar R.
                        %A B. Sendilkumar
                        %A Srividhya K.
                        %A Manimannan G.
                        %T Mining Emotions from Tweets: Sentiment Patterns During the COVID-19 Pandemic%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 46
                        %P 53-59
                        %R 10.5120/ijca2025925778
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This study examines a dataset of COVID-19-related tweets collected during the pandemic to understand public sentiment and emotional responses. The database consists of categorized tweets, classified into sentiment groups such as extremely positive, positive, neutral, negative, and extremely negative. Methodologically, the data was pre-processed and analyzed using statistical techniques and visualization tools to identify sentiment patterns. The results reveal that the majority of tweets reflected neutral and moderately negative opinions, with fewer tweets showing extreme sentiments. Visualization through bar charts and pie charts provided a clear representation of sentiment distribution, making the findings more accessible and interpretable. The study highlights the importance of monitoring social media platforms to gain real-time insights into public perception during health crises.

References
  • Chakraborty, I., & Maity, P. (2020). COVID-19 outbreak: Migration, effects on society, global environment and prevention. Science of the Total Environment, 728, 138882.
  • Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C. M., Brugnoli, E., Schmidt, A. L., ... & Scala, A. (2020). The COVID-19 social media infodemic. Scientific Reports, 10(1), 16598.
  • Samuel, J., Ali, G. G. M. N., Rahman, M. M., & Esawi, E. (2020). COVID-19 public sentiment insights and machine learning for tweets classification. Information, 11(6), 314.
  • Jelodar, H., Wang, Y., Orji, R., & Huang, H. (2020). Deep sentiment classification and topic discovery on novel coronavirus or COVID-19 online discussions: NLP using LSTM recurrent neural network approach. IEEE Journal of Biomedical and Health Informatics, 24(10), 2733–2742.
  • Ghosh, S., & Ghosh, S. (2021). Sentiment analysis on Twitter data of COVID-19 using machine learning. Materials Today: Proceedings, 45, 1075–1080.
  • Imran, M., Castillo, C., Diaz, F., & Vieweg, S. (2015). Processing social media messages in mass emergency: A survey. ACM Computing Surveys, 47(4), 67.
  • Sharma, K., Seo, S., Meng, C., Rambhatla, S., & Liu, Y. (2020). COVID-19 on social media: Analyzing misinformation in Twitter conversations. arXiv preprint, arXiv:2003.12309.
  • Lwin, M. O., Lu, J., Sheldenkar, A., Schulz, P. J., Shin, W., Gupta, R., & Yang, Y. (2020). Global sentiments surrounding the COVID-19 pandemic on Twitter: Analysis of Twitter trends. JMIR Public Health and Surveillance, 6(2), e19447.
  • Alqurashi, S., Alhindi, A., & Alotaibi, M. (2020). A new sentiment analysis dataset for Arabic social media. Procedia Computer Science, 170, 95–101.
  • Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.
  • Yoon, K. (2016). Convolutional neural networks for sentence classification. arXiv preprint, arXiv:1408.5882.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
  • Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253.
  • Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L. E., & Brown, D. E. (2019). Text classification algorithms: A survey. Information, 10(4), 150.
  • Rao, T., Srivastava, S., & Kumar, R. (2020). A deep learning approach for detecting hateful content on Twitter. Procedia Computer Science, 167, 1337–1344.
  • Manimannan, G. Lakshmi Priya, R. and A. Poongothai (2024). Predictive analysis and sentiment classification of COVID-19 tweets using TF-IDF, CNN, and LSTM models. Journal of Emerging Technologies and Innovative Research, 11(3), 245–253.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

COVID-19 Sentiment Analysis Social Media Data Visualization Public Perception

Powered by PhDFocusTM