Research Article

Emotionally Intelligent Chatbots in Mental Health: A Review of Psychological, Ethical, and Developmental Impacts

by  Ruwini Herath
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 29
Published: August 2025
Authors: Ruwini Herath
10.5120/ijca2025925507
PDF

Ruwini Herath . Emotionally Intelligent Chatbots in Mental Health: A Review of Psychological, Ethical, and Developmental Impacts. International Journal of Computer Applications. 187, 29 (August 2025), 49-56. DOI=10.5120/ijca2025925507

                        @article{ 10.5120/ijca2025925507,
                        author  = { Ruwini Herath },
                        title   = { Emotionally Intelligent Chatbots in Mental Health: A Review of Psychological, Ethical, and Developmental Impacts },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 29 },
                        pages   = { 49-56 },
                        doi     = { 10.5120/ijca2025925507 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Ruwini Herath
                        %T Emotionally Intelligent Chatbots in Mental Health: A Review of Psychological, Ethical, and Developmental Impacts%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 29
                        %P 49-56
                        %R 10.5120/ijca2025925507
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Use of emotionally intelligent chatbots is increasing in mental health settings to provide support by recognizing and reacting to users’ emotions. This review has a closer look at 59 peer-reviewed studies from 2017 to 2024, with a focus on systems like Woebot and Wysa. It maps out how affective computing, psychological frameworks like cognitive behavioral therapy (CBT), and human-computer interaction theories shape these systems. While there is early evidence of benefits like reduced anxiety and better emotional self-awareness, many issues remain unresolved. These include weak long-term evidence, cultural bias in emotion recognition, and potential over-dependence on AI. We also highlight the risks of collecting and using emotional data without sufficient oversight. Based on this, we suggest future research should move toward multicultural, longer-term, and ethically grounded studies. The goal should be to create emotionally intelligent systems that support, not replace, genuine human connection, especially in vulnerable populations.

References
  • N. Kallivalappil, K. D’souza, A. Deshmukh, C. Kadam, and N. Sharma, “Empath.ai: A context-aware chatbot for emotional detection and support,” in Proc. 14th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT), 2023, pp. 1–7. doi:10.1109/ICCCNT56998.2023.10306584.
  • T. Spring, J. Casas, K. Daher, E. Mugellini, and O. A. Khaled, “Empathic response generation in chatbots,” CONVERSATIONS Workshop, Amsterdam, 2019. [Online]. Available: https://arxiv.org/abs/1911.12315
  • S. Devaram, “Empathic Chatbot: Emotional Intelligence for Mental Health Well-being,” in IEEE ICAC3, Bournemouth University, UK, 2020. [Online]. Available: https://arxiv.org/abs/2012.09130
  • S. B. Velagaleti, “Empathetic algorithms: The role of AI in understanding and enhancing human emotional intelligence,” J. Electr. Syst., vol. 20, no. 3s, pp. 2051–2060, 2024. doi:10.52783/jes.1806
  • S. Zeb, N. FNU, N. Abbasi, and M. Fahad, “AI in Healthcare: Revolutionizing Diagnosis and Therapy,” Int. J. Multidiscip. Sci. Arts, vol. 3, no. 3, 2024. doi:10.47709/ijmdsa.v3i3.4546
  • S. Tahir, S. A. Shah, and J. Abu-Khalaf, “Artificial Empathy Classification: A Survey,” arXiv preprint, arXiv:2310.00010, 2023. [Online]. Available: https://arxiv.org/abs/2310.00010
  • S. Cao et al., “Pain recognition and pain empathy from a human-centered AI perspective,” iScience, vol. 27, no. 8, p. 110570, 2024. doi: 10.1016/j.isci.2024.110570
  • M. Shvo and S. A. McIlraith, “Towards Empathetic Planning and Plan Recognition,” in Proc. AIES ’19, 2019, pp. 525–526. doi:10.1145/3306618.3314307
  • G. Bilquise, S. Ibrahim, and K. Shaalan, “Emotionally intelligent chatbots: A systematic review,” Hum. Behav. Emerg. Technol., pp. 1–23, 2022. doi:10.1155/2022/9601630
  • A. Ghandeharioun, D. McDuff, M. Czerwinski, and K. Rowan, “Towards understanding emotional intelligence for behavior change chatbots,” arXiv preprint, arXiv:1907.10664, 2019. doi:10.48550/arXiv.1907.10664
  • M. Rostami and S. Navabinejad, “Artificial empathy: User experiences with emotionally intelligent chatbots,” AI & Tech. Behav. Soc. Sci., vol. 1, no. 3, pp. 19–27, 2023. doi:10.61838/kman.aitech.1.3.4
  • P. Borele and D. A. Borikar, “An approach to sentiment analysis using artificial neural networks,” IOSR J. Comput. Eng., vol. 18, no. 2, pp. 64–69, 2016. doi:10.9790/0661-1802056469
  • P. Chakriswaran et al., “Emotion AI-driven sentiment analysis,” Appl. Sci., vol. 9, no. 24, p. 5462, 2019. doi:10.3390/app9245462
  • H. S. Yang et al., “AI chatbots in clinical laboratory medicine,” Clin. Chem., vol. 69, no. 11, pp. 1238–1246, 2023. doi:10.1093/clinchem/hvad106
  • A. R. Mathew, A. Al Hajj, and A. Al Abri, “Human-computer interaction (HCI): An overview,” in IEEE Int. Conf. Comput. Sci. Autom. Eng., 2011, pp. 99–100. doi:10.1109/CSAE.2011.5953178
  • B. Myers et al., “Strategic directions in human-computer interaction,” ACM Comput. Surv., vol. 28, no. 4, pp. 794–809, 1996. doi:10.1145/242223.246855
  • R. J. Lee-Won, Y. K. Joo, and S. G. Park, “Media Equation,” Int. Encycl. Media Psychol., 2020. doi:10.1002/9781119011071.iemp0158
  • C. Bartneck, C. Rosalia, R. Menges, and I. Deckers, “Robot abuse – A limitation of the media equation,” Eindhoven Univ. Technol., n.d. [Online]. Available: http://www.bartneck.de
  • D. Johnson and J. Gardner, “The media equation and team formation,” Int. J. Hum.-Comput. Stud., vol. 65, no. 2, pp. 111–124, 2007. doi:10.1016/j.ijhcs.2006.08.007
  • O. Gillath et al., “Attachment and trust in AI,” Comput. Hum. Behav., vol. 115, p. 106607, 2021. doi: 10.1016/j.chb.2020.106607
  • T. Xie and I. Pentina, “Attachment theory for chatbot relationships: A case study of Replika,” in Proc. HICSS, 2022. doi:10.24251/HICSS.2022.258
  • D. Petters and E. Waters, “AI, attachment theory, and secure base simulation,” AISB 2010 Convention, 2010.
  • L. Kambeitz-Ilankovic et al., “Review of digital and face-to-face CBT for depression,” npj Digit. Med., vol. 5, p. 144, 2022. doi:10.1038/s41746-022-00677-8
  • H. M. Jackson et al., “Skill enactment in digital CBT,” J. Med. Internet Res., vol. 25, p. e44673, 2023. doi:10.2196/44673
  • G. R. Thew, A. Rozental, and H. D. Hadjistavropoulos, “Advances in digital CBT,” Cogn. Behav. Ther., vol. 15, p. e44, 2022. doi:10.1017/S1754470X22000423
  • L. Lawlor-Savage and J. L. Prentice, “Digital CBT in Canada: Ethical considerations,” Can. Psychol., vol. 55, no. 4, pp. 231–239, 2014. doi:10.1037/a0037861
  • M. Farzan et al., “AI-powered CBT chatbots: A review,” Iran. J. Psychiatry, 2024. doi:10.18502/ijps.v20i1.17395
  • B. Maples et al., “GPT3-enabled chatbots and suicide prevention,” npj Ment. Health Res., vol. 3, p. 4, 2024. doi: 10.1038/s44184-023-00047-6
  • E. Gabarron, D. Larbi, K. Denecke, and E. Årsand, “Chatbots in public health,” Stud. Health Technol. Inform., IOS Press, 2020.
  • V. K. Voola et al., “AI chatbots in clinical trials,” Int. J. Res. Publ. Seminar, vol. 13, no. 5, pp. 323–337, 2022. doi:10.36676/jrps.v13.i5.1505
  • L. T. Car et al., “Conversational agents in health care: Scoping review and conceptual analysis,” J. Med. Internet Res., vol. 22, no. 8, p. e17158, 2020. doi:10.2196/17158
  • M. Laymouna et al., “Roles, users, benefits, and limitations of chatbots in health care: Rapid review (preprint),” 2024. doi: 10.2196/preprints.56930
  • D. S. Parikh and H. Raval, “Limitations of existing chatbots: An analytical survey,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 7, no. 2, 2020.
  • V. S. Barletta et al., “Clinical-chatbot AHP evaluation based on ‘quality in use’ of ISO/IEC 25010,” Int. J. Med. Inform., vol. 170, p. 104951, 2023. doi:10.1016/j.ijmedinf.2022.104951
  • H. S. Yang et al., “AI chatbots in clinical laboratory medicine: Foundations and trends,” Clin. Chem., vol. 69, no. 11, pp. 1238–1246, 2023. doi:10.1093/clinchem/hvad106
  • E. Ortega-Ochoa et al., “The effectiveness of empathic chatbot feedback in online higher education,” Internet Things, vol. 25, p. 101101, 2024. doi:10.1016/j.iot.2024.101101
  • M. Rostami and S. Navabinejad, “Artificial empathy: User experiences with emotionally intelligent chatbots,” AI Tech Behav. Soc. Sci., vol. 1, no. 3, pp. 19–27, 2023. doi:10.61838/kman.aitech.1.3.4
  • R. Indellicato, “Artificial intelligence and social-emotional learning: What relationship?” J. Mod. Sci., vol. 60, no. 6, pp. 460–470, 2024. doi:10.13166/jms/196765
  • S. S. Sethi and K. Jain, “AI technologies for social-emotional learning,” J. Res. Innov. Teach. Learn., vol. 17, no. 2, pp. 213–225, 2024. doi:10.1108/JRIT-03-2024-0073
  • M. I. Gómez-León, “Development of empathy through socioemotional AI,” Papeles del Psicólogo, vol. 43, no. 3, p. 218, 2022. doi:10.23923/pap.psicol.2996
  • K. Heljakka, P. Ihamäki, and A. I. Lamminen, “Empathic responses to robot dogs vs. real dogs in learning,” in Proc. CHI PLAY '20, pp. 262–266, 2020. doi:10.1145/3383668.3419900
  • C. Akbulut et al., “All too human? Mapping and mitigating risks from anthropomorphic AI,” AIES Conf., vol. 7, pp. 13–26, 2024. doi:10.1609/aies.v7i1.31613
  • C. Montemayor, J. Halpern, and A. Fairweather, “In principle, there are obstacles for empathic AI in healthcare,” AI & Society, vol. 37, no. 4, pp. 1353–1359, 2022. doi:10.1007/s00146-021-01230-z
  • M. Rubin, H. Arnon, J. D. Huppert, and A. Perry, “Considering human empathy in AI-driven therapy (preprint),” 2024. doi:10.2196/preprints.56529
  • R. Agrawal and N. Pandey, “Developing rapport with emotionally intelligent AI assistants,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 3, pp. 1473–1480, 2024. doi: 10.22214/ijraset.2024.59015
  • A. McStay, “Emotional AI and privacy,” Big Data & Society, vol. 7, no. 1, p. 205395172090438, 2020. doi:10.1177/2053951720904386
  • K. Roemmich, F. Schaub, and N. Andalibi, “Emotion AI at work,” in Proc. CHI Conf. Hum. Factors Comput. Syst., pp. 1–20, 2023. doi:10.1145/3544548.3580950
  • E. Sedenberg and J. Chuang, “Smile for the camera: Privacy implications of emotion AI,” UC Berkeley School of Information, n.d. [Online]. Available: https://www.ischool.berkeley.edu/research/publications/smile-camera-privacy-and-policy-implications-emotion-ai
  • L. Rhue, “Racial influence on automated perceptions of emotions,” SSRN Electron. J., 2018. doi:10.2139/ssrn.3281765
  • M. Yoshie and D. A. Sauter, “Cultural norms in nonverbal emotion expression,” Emotion, vol. 20, no. 3, pp. 513–517, 2020. doi:10.1037/emo0000580
  • M. Mattioli and F. Cabitza, “Ethics in automatic face emotion recognition,” Mach. Learn. Knowl. Extr., vol. 6, pp. 2201–2231, 2024. doi: 10.3390/make6040109
  • M. Nagata and K. Okajima, “Observer culture and facial expression recognition,” PLoS ONE, vol. 19, no. 10, p. e0313029, 2024. doi:10.1371/journal.pone.0313029
  • I. Dominguez-Catena, D. Paternain, and M. Galar, “Metrics for dataset demographic bias in facial expression recognition,” arXiv preprint, arXiv:2303.15889, 2024. [Online]. Available: https://arxiv.org/abs/2303.15889
  • G. Benitez-Garcia, T. Nakamura, and M. Kaneko, “Facial expression recognition with Fourier descriptors,” J. Signal Inf. Process., vol. 8, no. 3, 2017. doi:10.4236/jsip.2017.83009
  • R. Pusztahelyi and I. Stefán, “Social robots and data protection,” Acta Univ. Sapientiae, Legal Studies, vol. 11, no. 1, pp. 95–118, 2022. doi:10.47745/AUSLEG.2022.11.1.06
  • E. Schwitzgebel, “AI systems must not mislead about sentience,” Patterns, vol. 4, no. 8, p. 100818, 2023. doi:10.1016/j.patter.2023.100818
  • M. S. Farahani and G. Ghasemi, “Artificial intelligence and inequality,” Qeios, 2024. doi:10.32388/7HWUZ2
  • A. Hagerty and I. Rubinov, “Global AI ethics: Review of social impacts,” arXiv preprint, arXiv:1907.07892, 2019. [Online]. Available: https://arxiv.org/abs/1907.07892.
  • P. Choudhury, R. T. Allen, and M. G. Endres, “ML for pattern discovery in management research,” Strat. Manag. J., vol. 42, no. 1, pp. 30–57, 2021. doi:10.1002/smj.3215.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Empathic AI Affective computing Mental-health chatbots Artificial empathy Human–computer interaction Emotion recognition

Powered by PhDFocusTM