Research Article

Hand Gesture Recognition Systems: A Review of Methods, Datasets, and Emerging Trends

by  Md Selim Sarowar, Nur E Jannatul Farjana, Md. Asraful Islam Khan, Md Abdul Mutalib, Syful Islam, Mohaiminul Islam
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Issue 2
Published: May 2025
Authors: Md Selim Sarowar, Nur E Jannatul Farjana, Md. Asraful Islam Khan, Md Abdul Mutalib, Syful Islam, Mohaiminul Islam
10.5120/ijca2025924776
PDF

Md Selim Sarowar, Nur E Jannatul Farjana, Md. Asraful Islam Khan, Md Abdul Mutalib, Syful Islam, Mohaiminul Islam . Hand Gesture Recognition Systems: A Review of Methods, Datasets, and Emerging Trends. International Journal of Computer Applications. 187, 2 (May 2025), 1-33. DOI=10.5120/ijca2025924776

                        @article{ 10.5120/ijca2025924776,
                        author  = { Md Selim Sarowar,Nur E Jannatul Farjana,Md. Asraful Islam Khan,Md Abdul Mutalib,Syful Islam,Mohaiminul Islam },
                        title   = { Hand Gesture Recognition Systems: A Review of Methods, Datasets, and Emerging Trends },
                        journal = { International Journal of Computer Applications },
                        year    = { 2025 },
                        volume  = { 187 },
                        number  = { 2 },
                        pages   = { 1-33 },
                        doi     = { 10.5120/ijca2025924776 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2025
                        %A Md Selim Sarowar
                        %A Nur E Jannatul Farjana
                        %A Md. Asraful Islam Khan
                        %A Md Abdul Mutalib
                        %A Syful Islam
                        %A Mohaiminul Islam
                        %T Hand Gesture Recognition Systems: A Review of Methods, Datasets, and Emerging Trends%T 
                        %J International Journal of Computer Applications
                        %V 187
                        %N 2
                        %P 1-33
                        %R 10.5120/ijca2025924776
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Hand gestures are a powerful method of communication that serve as a bridge between humans and computers, enabling intuitive interaction. Hand Gesture Recognition (HGR) systems aim to support this vision but face several challenges such as gesture irregularity, illumination variation, background interference, and computational complexity. This study evaluates 252 peer-reviewed articles published between 1995 and 2024, with a focus on input modalities, algorithmic approaches, benchmark datasets, application domains, and system-level challenges such as automation, scalability, generalization, and real-time performance.The evolution of HGR methods is categorized chronologically, beginning with early rulebased models, progressing through classical machine learning techniques such as SVM, KNN, and HMM, and advancing to deep learning frameworks including CNNs, RNNs, LSTMs, 3D CNNs, and Graph Convolutional Networks (GCNs). In recent years, hybrid and pretrained architectures including LSTM+3DCNN, MAE+STGCN, and Transformer-based models have been proposed to address existing limitations and improve performance. Various input modalities have been explored, including RGB image and video data, depth sensors, skeletal tracking, IMU, and EMG signals. Widely adopted benchmark datasets include SHREC, DHG- 14/28, and NVGesture. A temporal classification framework is introduced to segment the progression of HGR technologies across decades. The study highlights key trends, technological advancements, and unresolved challenges, offering insights that may guide the development of accurate, efficient, and user-centric HGR systems, particularly in mobile and embedded computing contexts.

References
  • J. P. Sahoo, A. Jaya Prakash, P. Plawiak, and S. Samantray, “Real-time hand gesture recognition using fine-tuned convolutional neural network,” Jan. 2022. [Online]. Available: https://doi.org/10.3390/s22030706
  • C. K. Tan, K. M. Lim, R. K. Y. Chang, C. P. Lee, and A. Alqahtani, “Hgr-vit: Hand gesture recognition with vision transformer,” Jan. 2023. [Online]. Available: https://doi.org/10.3390/s23125555
  • K. O. Oyedotun and A. Khashman, “Deep learning in vision-based static hand gesture recognition,” Springer London. [Online]. Available: https: //doi.org/10.1007/s00521-016-2294-8
  • J. Qi, L. Ma, Z. Cui, and Y. Yu, “Computer vision-based hand gesture recognition for human-robot interaction: a review,” Feb. 2024. [Online]. Available: https://doi.org/10. 1007/s40747-023-01173-6
  • I. Archive, “Petabox,” https://archive.org/web/petabox.php, 2023. [Online]. Available: https://archive.org/web/petabox. php
  • L. Leal-Taixe and S. Roth, Eds., Computer Vision ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018, Proceedings, Part III, ser. Lecture Notes in Computer Science. Cham, Switzerland: Springer, 2019, vol. 11131, part of the book sub series: Image Processing, Computer Vision, Pattern Recognition, and Graphics (LNIP). Included in the conference series: ECCV: European Conference on Computer Vision. 109k Accesses, 944 Citations, 10 Altmetric.
  • P. K. Sa, M. N. Sahoo, M. Murugappan, Y. Wu, and B. Majhi, Eds., Progress in Intelligent Computing Techniques: Theory, Practice, and Applications: Proceedings of ICACNI 2016, Volume 1, ser. Advances in Intelligent Systems and Computing, vol. 518. Springer, 2018.
  • F. d. C. E. y. N. Universidad de Buenos Aires, “Biblioteca digital,” https://bibliotecadigital.exactas.uba.ar/, 2023, accessed: [2-2-2025]. [Online]. Available: https: //bibliotecadigital.exactas.uba.ar/
  • H. I. Mohammed, B. A. Sultan, and K. H. Hamee, “Hand gestures recognition classification,” International Journal of Engineering Research Updates, vol. 3, no. 2, pp. 008 – 012, Oct. 2022.
  • U. catholique de Louvain (UCLouvain), “Uclouvain website,” https://sites.uclouvain.be/, 2023, accessed: [Insert Date of Access]. [Online]. Available: https://sites.uclouvain.be/
  • G. Benitez-Garcia, J. Olivares-Mercado, G. Sanchez-Perez, and K. Yanai, “Ipn hand: A video dataset and benchmark for real-time continuous hand gesture recognition,” in 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, Jan. 2021. [Online]. Available: http: //dx.doi.org/10.1109/ICPR48806.2021.9412317
  • A. Robotics, “Artificial life robotics,” https://alife-robotics. co.jp/, 2023, accessed: [2-2-2025]. [Online]. Available: https://alife-robotics.co.jp/
  • S. Shanmugam and R. S. Narayanan, “An accurate estimation of hand gestures using optimal modified convolutional neural network,” Expert Systems with Applications, vol. 249, p. 123351, Sep. 2024. [Online]. Available: http://dx.doi.org/10.1016/j.eswa.2024.123351
  • I. J. of Electrical and C. E. (IJECE), “Ijece: International journal of electrical and computer engineering,” https: //ijece.iaescore.com/, 2023, accessed: 2-2-2025. [Online]. Available: https://ijece.iaescore.com/
  • D. Sarma and M. K. Bhuyan, “Methods, databases and recent advancement of vision-based hand gesture recognition for hci systems: A review,” SN Computer Science, vol. 2, no. 6, Aug. 2021.
  • M. Yasen and S. Jusoh, “A systematic review on hand gesture recognition techniques, challenges and applications,” PeerJ Computer Science, vol. 5, p. e218, Sep. 2019. [Online]. Available: http://dx.doi.org/10.7717/peerj-cs.218
  • B. Kareem Murad and A. H. Hassin Alasadi, “Advancements and challenges in hand gesture recognition: A comprehensive review,” Iraqi Journal for Electrical and Electronic Engineering, vol. 20, no. 2, pp. 154-164, Jul. 2024. [Online]. Available: http://dx.doi.org/10.37917/ijeee.20.2.13
  • S. Gupta, P. Bujade, V. Singh, and S. Tiwari, “Hand gesture recognition system using deep learning,” International Journal For Multidisciplinary Research, vol. 6, no. 3, May 2024. [Online]. Available: http://dx.doi.org/10.36948/ijfmr. 2024.v06i03.19602
  • R. Dhiman, P. Luthra, and N. T. Singh, “Different categories of feature extraction and machine learning classification models used for hand gesture recognition systems: A review,” IEEE Access, vol. 11, pp. 1–7, April 2023. [Online]. Available: http://dx.doi.org/10.1109/I2CT57861. 2023.10126410
  • F.-S. Chen, C.-M. Fu, and C.-L. Huang, “Hand gesture recognition using a real-time tracking method and hidden markov models,” Image and Vision Computing, vol. 21, no. 8, pp. 745–758, August 2003. [Online]. Available: http://dx.doi.org/10.1016/S0262-8856(03)00070-2
  • J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for gesture recognition and spatiotemporal gesture segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1685–1699, 2009. [Online]. Available: https://doi.org/10. 1109/TPAMI.2008.203
  • S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hidden conditional random fields for gesture recognition,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE, p. 1521 – 1527. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2006.132
  • L. Gupta and S. Ma, “Gesture-based interaction and communication: automated classification of hand gesture contours,” IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol. 31, no. 1, pp. 114–120, 2001. [Online]. Available: http: //dx.doi.org/10.1109/5326.923274
  • S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hidden conditional random fields for gesture recognition,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR06), vol. 2. IEEE, 2006, pp. 1521–1527. [Online]. Available: http://dx.doi.org/10.1109/ CVPR.2006.132
  • M. Kolsch and M. Turk, “Robust hand detection,” in Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings. IEEE, pp. 614– 619. [Online]. Available: http://dx.doi.org/10.1109/AFGR. 2004.1301601
  • L. Lee and W. Grimson, “Gait analysis for recognition and classification,” in Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, ser. AFGR-02. IEEE, p. 155–162. [Online]. Available: http://dx.doi.org/10.1109/AFGR.2002.1004148
  • M.-H. Yang, N. Ahuja, and M. Tabb, “Extraction of 2d motion trajectories and its application to hand gesture recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1061–1074, 2002. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2002. 1023803
  • H.-I. Suk, B.-K. Sin, and S.-W. Lee, “Hand gesture recognition based on dynamic bayesian network framework,” Pattern Recognition, vol. 43, no. 9, pp. 3059–3072, 2010. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0031320310001366
  • M. Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, “A hidden markov model-based continuous gesture recognition system for hand motion trajectory,” in 2008 19th International Conference on Pattern Recognition, 2008, pp. 1–4. [Online]. Available: https://doi.org/10.1109/ICPR.2008.4761080
  • D.-H. Lee and K.-S. Hong, “Game interface using hand gesture recognition,” in 5th International Conference on Computer Sciences and Convergence Information Technology. IEEE, 2010. [Online]. Available: http://dx. doi.org/10.1109/ICCIT.2010.5711226
  • A. Amaravati, S. Xu, N. Cao, J. Romberg, and A. Raychowdhury, “A light-powered smart camera with compressed domain gesture detection,” IEEE Transactions on Circuits and Systems for Video Technology, 2022.
  • A. Sen, S. Dombe, T. K. Mishra, and R. Dash, “Hgrfyolo: a robust hand gesture recognition system for the normal and physically impaired person using frozen yolov5,” Multimedia Tools and Applications, vol. 83, no. 30, pp. 73 797–73 815, Feb. 2024. [Online]. Available: http://dx.doi.org/10.1007/s11042-024-18464-w
  • R. Shrivastava, “A hidden markov model based dynamic hand gesture recognition system using opencv,” in 2013 3rd IEEE International Advance Computing Conference (IACC). IEEE, Feb. 2013. [Online]. Available: http: //dx.doi.org/10.1109/IAdCC.2013.6514354
  • K. M. Sagayam and D. J. Hemanth, “A probabilistic model for state sequence analysis in hidden markov model for hand gesture recognition,” Computational Intelligence, vol. 35, no. 1, pp. 59–81, 2019. [Online]. Available: https://doi.org/10.1111/coin.12188
  • K. Bimbraw, A. Talele, and H. K. Zhang, “Hand gesture classification based on forearm ultrasound video snippets using 3d convolutional neural networks,” 2024. [Online]. Available: https://arxiv.org/abs/2409.16431
  • M. S. A. Milu, A. Fathima, T. Talukder, I. Islam, and M. I. S. Emon, “Design and implementation of hand gesture detection system using hm model for sign language recognition development,” Journal of Data Analysis and Information Processing, vol. 12, no. 2, pp. 139–150, 2024. [Online]. Available: http://dx.doi.org/10.4236/jdaip. 2024.122008
  • Q. Chen, N. D. Georganas, and E. M. Petriu, “Realtime vision-based hand gesture recognition using haar-like features,” in 2007 IEEE Instrumentation amp; Measurement Technology Conference IMTC 2007. IEEE, May 2007, pp. 1–6. [Online]. Available: http://dx.doi.org/10.1109/IMTC. 2007.379068
  • K. Murakami and H. Taguchi, “Gesture recognition using recurrent neural networks,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - Reaching Through Technology (CHI’91). ACM Press, 1991, pp. 237–242. [Online]. Available: http: //dx.doi.org/10.1145/108844.108900
  • T. Schl¨omer, B. Poppinga, N. Henze, and S. Boll, “Gesture recognition with a wii controller,” in Proceedings of the 2nd international conference on Tangible and embedded interaction, ser. TEI08. ACM, Feb. 2008. [Online]. Available: http://dx.doi.org/10.1145/1347390.1347395
  • R. Kjeldsen and J. Kender, “Toward the use of gesture in traditional user interfaces,” in Proceedings of the Second International Conference on Automatic Face and Gesture Recognition (AFGR-96). IEEE Computer Society Press, 1996, pp. 151–156. [Online]. Available: http://dx.doi.org/10.1109/AFGR.1996.557257
  • S. Waldherr, R. Romero, and S. Thrun, “A gesture-based interface for human-robot interaction,” Autonomous Robots, vol. 9, no. 2, pp. 151–173, 2000. [Online]. Available: http://dx.doi.org/10.1023/A:1008918401478
  • T. Starner, J. Weaver, and A. Pentland, “Real-time american sign language recognition using desk and wearable computer based video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1371–1375, 1998. [Online]. Available: http: //dx.doi.org/10.1109/34.735811
  • C. Vogler and D. Metaxas, “A framework for recognizing the simultaneous aspects of american sign language,” Computer Vision and Image Understanding, vol. 81, no. 3, pp. 358–384, Mar. 2001. [Online]. Available: http://dx.doi.org/10.1006/cviu.2000.0895
  • Y. F. A. Gaus and F. Wong, “Hidden markov model-based gesture recognition with overlapping hand-head/handhand estimated using kalman filter,” in 2012 Third International Conference on Intelligent Systems Modelling and Simulation. IEEE, Feb. 2012, pp. 262–267. [Online]. Available: http://dx.doi.org/10.1109/ISMS.2012.67
  • M. Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, “A hidden markov model-based isolated and meaningful hand gesture recognition,” International Journal of Electrical, Computer, and Systems Engineering, vol. 3, no. 3, pp. 156–163, 2009.
  • M. Elmezain, A. Al-Hamadi, and B. Michaelis, “Hand trajectory-based gesture spotting and recognition using hmm,” in 2009 16th IEEE International Conference on Image Processing (ICIP). IEEE, Nov. 2009, pp. 3577– 3580. [Online]. Available: http://dx.doi.org/10.1109/ICIP. 2009.5414322
  • N. Liu, B. C. Lovell, and P. J. Kootsookos, “Evaluation of hmm training algorithms for letter hand gesture recognition,” in Proc. 3rd IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT-03) (IEEE Cat. No.03EX795). IEEE, 2003, pp. 648–651. [Online]. Available: http://dx.doi.org/ 10.1109/ISSPIT.2003.1341204
  • T. Hachaj and M. R. Ogiela, “Rule-based approach to recognizing human body poses and gestures in real time,” Multimedia Syst., vol. 20, no. 1, pp. 81–99, Sep. 2013. [Online]. Available: http://dx.doi.org/10.1007/ s00530-013-0332-2
  • M.-C. Su, “A fuzzy rule-based approach to spatio-temporal hand gesture recognition,” IEEE Trans. Syst., Man, Cybern. Part C (Appl. Rev.), vol. 30, no. 2, pp. 276–281, May 2000. [Online]. Available: http://dx.doi.org/10.1109/5326.868448
  • L. Billiet, J. Oramas, M. Hoffmann, W. Meert, and L. Antanas, “Rule-based hand posture recognition using qualitative finger configurations acquired with the kinect,” in Proc. 2nd Int. Conf. Pattern Recognit. Appl. Methods (ICPRAM), Vol. 1. Barcelona, Spain: SciTePress, 2013, pp. 539–542. [Online]. Available: http://dx.doi.org/10.5220/ 0004230805390542
  • G. McGlaun, F. Althoff, M. Lang, and G. Rigoll, Robust Video-Based Recognition of Dynamic Head Gestures in Various Domains – Comparing a Rule-Based and a Stochastic Approach. Springer Berlin Heidelberg, 2004, p. 180–197. [Online]. Available: http://dx.doi.org/10.1007/ 978-3-540-24598-8 18
  • T. Hachaj and M. R. Ogiela, “Rule-based approach to recognizing human body poses and gestures in real time,” Multimedia Syst., vol. 20, no. 1, pp. 81–99, Sep. 2013. [Online]. Available: http://dx.doi.org/10.1007/ s00530-013-0332-2
  • A. Riad, “Hand gesture recognition system based on a geometric model and rule based classifier,” British Journal of Applied Science & Technology, vol. 4, no. 9, pp. 1432–1444, jan 2014. [Online]. Available: http: //dx.doi.org/10.9734/BJAST/2014/7956
  • M. P. Craven, K. M. Curtis, B. H. Hayes-Gill, and C. D. Thursfield, “A hybrid neural network rule-based technique for gesture recognition,” in Proceedings of the Fourth IEEE International Conference on Electronics, Circuits and Systems, 1997. [Online]. Available: https: //nottingham-repository.worktribe.com/output/1024332
  • M. L. G. McGlaun, F. Althoff and G. Rigoll, “Robust video-based recognition of dynamic head gestures in various domains – comparing a rule-based and a stochastic approach,” in Gesture-Based Communication in Human- Computer Interaction, A. Camurri and G. Volpe, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 180–197. [Online]. Available: http://dx.doi.org/10.1007/ 978-3-540-24598-8 18
  • Z. Ren, J. Yuan, J. Meng, and Z. Zhang, “Robust partbased hand gesture recognition using kinect sensor,” IEEE Transactions on Multimedia, vol. 15, no. 5, pp. 1110–1120, Aug. 2013. [Online]. Available: http://dx.doi.org/10.1109/ TMM.2013.2246148
  • H. Leon-Garza, H. Hagras, A. Pena-Rios, O. Bahceci, and A. Conway, “A hand-gesture recognition based interpretable type-2 fuzzy rule-based system for extended reality,” in 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, Oct. 2022, pp. 2894–2899. [Online]. Available: http://dx.doi.org/10.1109/SMC53654. 2022.9945407
  • Y. Cui and J. Weng, “Appearance-based hand sign recognition from intensity image sequences,” Computer Vision and Image Understanding, vol. 78, no. 2, pp.157–176, May 2000. [Online]. Available: http://dx.doi.org/ 10.1006/cviu.2000.0837
  • B. Bauer and H. Hienz, “Relevant features for video-based continuous sign language recognition,” in Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), ser. AFGR- 00. IEEE Comput. Soc, 2000, pp. 440–445. [Online]. Available: http://dx.doi.org/10.1109/AFGR.2000.840672
  • T. Hachaj and M. R. Ogiela, “Rule-based approach to recognizing human body poses and gestures in real time,” Multimedia Systems, vol. 20, no. 1, pp. 81–99, Sep. 2013. [Online]. Available: http://dx.doi.org/10.1007/ s00530-013-0332-2
  • ——, “Rule-based approach to recognizing human body poses and gestures in real time,” Multimedia Systems, vol. 20, no. 1, pp. 81–99, Sep. 2013. [Online]. Available: http://dx.doi.org/10.1007/s00530-013-0332-2
  • G. McGlaun, F. Althoff, M. Lang, and G. Rigoll, Robust Video-Based Recognition of Dynamic Head Gestures in Various Domains – Comparing a Rule-Based and a Stochastic Approach. Springer Berlin Heidelberg, 2004, pp. 180–197. [Online]. Available: http://dx.doi.org/10.1007/ 978-3-540-24598-8 18
  • A. C. R. C. B. C. Bedregal and G. P. Dimuro, Fuzzy Rule-Based Hand Gesture Recognition. Springer US, 2007, pp. 285–294. [Online]. Available: http://dx.doi.org/ 10.1007/978-0-387-34747-9 30
  • M. Lech and B. Kostek, “Hand gesture recognition supported by fuzzy rules and kalman filters,” International Journal of Intelligent Information and Database Systems, vol. 6, no. 5, p. 407, 2012. [Online]. Available: http: //dx.doi.org/10.1504/IJIIDS.2012.049304
  • Y. Chen, W. Gao, and J. Ma, “Hand gesture recognition based on decision tree,” in Proc. International Symposium on Chinese Spoken Language Processing, 2000, pp. 299– 302.
  • M. Lech and B. Kostek, “Hand gesture recognition supported by fuzzy rules and kalman filters,” vol. 6, no. 5, 2012, pp. 407–420, pMID: 49304. [Online]. Available: https://www.inderscienceonline.com/doi/abs/10. 1504/IJIIDS.2012.049304
  • H.-I. Lin, M.-H. Hsu, and W.-K. Chen, “Human hand gesture recognition using a convolution neural network,” pp. 1038–1043, Aug. 2014. [Online]. Available: http: //dx.doi.org/10.1109/CoASE.2014.6899454
  • K. Liu, C. Chen, R. Jafari, and N. Kehtarnavaz, “Multihmm classification for hand gesture recognition using two differing modality sensors,” pp. 1–4, Oct. 2014. [Online]. Available: http://dx.doi.org/10.1109/DCAS.2014.6965338
  • E. Ohn-Bar and M. M. Trivedi, “Hand gesture recognition in real time for automotive interfaces: A multimodal vision-based approach and evaluations,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 6, pp. 2368–2377, Dec. 2014. [Online]. Available: http: //dx.doi.org/10.1109/TITS.2014.2337331
  • K. Liu, C. Chen, R. Jafari, and N. Kehtarnavaz, “Fusion of inertial and depth sensor data for robust hand gesture recognition,” IEEE Sensors Journal, vol. 14, no. 6, pp. 1898–1903, Jun. 2014. [Online]. Available: http: //dx.doi.org/10.1109/JSEN.2014.2306094
  • D. K. Ghosh and S. Ari, “Static hand gesture recognition using mixture of features and svm classifier,” pp. 1094 – 1099, Apr. 2015. [Online]. Available: http://dx.doi.org/10. 1109/CSNT.2015.18
  • J.-W. Wang, N. T. Le, C.-C. Wang, and J.-S. Lee, “Hand posture recognition using a three-dimensional light field camera,” IEEE Sensors Journal, vol. 16, no. 11, pp. 4389–4396, Jun. 2016. [Online]. Available: http://dx.doi.org/10.1109/JSEN.2016.2546556
  • Y. Chen, Z. Ding, Y.-L. Chen, and X. Wu, “Rapid recognition of dynamic hand gestures using leap motion,” pp. 1419–1424, Aug. 2015. [Online]. Available: http: //dx.doi.org/10.1109/ICInfA.2015.7279509
  • J. M. Alvarez-Alvarado, J. G. Rios-Moreno, S. A. Obregon-Biosca, G. Ronquillo-Lomeli, E. Ventura-Ramos, and M. Trejo-Perea, “Hybrid techniques to predict solar radiation using support vector machine and search optimization algorithms: A review,” Applied Sciences, vol. 11, no. 3, p. 1044, Jan. 2021. [Online]. Available: http://dx.doi.org/10.3390/app11031044
  • CORE, “Core: Aggregating the world’s open access research papers,” https://core.ac.uk/, 2023, accessed: [2-2- 2025]. [Online]. Available: https://core.ac.uk/
  • O. B. University, “Oxford brookes university cms,” https: //cms.brookes.ac.uk/, 2023, accessed: [2-2-2025]. [Online]. Available: https://cms.brookes.ac.uk/
  • K. V. M. Mohan and M. S. Babu, Eds., Disruptive Technologies in Computing and Communication Systems: Proceedings of the 1st International Conference on Disruptive Technologies in Computing and Communication Systems. Boca Raton, FL: CRC Press, 2024.
  • P. Natarajan and R. Nevatia, “Hierarchical multi-channel hidden semi markov graphical models for activity recognition,” Computer Vision and Image Understanding, vol. 117, no. 10, pp. 1329–1344, Oct. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2012.08.011
  • X. Wang, M. Xia, H. Cai, Y. Gao, and C. Cattani, “Hidden markov models based dynamic hand gesture recognition,” Mathematical Problems in Engineering, vol. 2012, no. 1, Jan. 2012. [Online]. Available: http://dx.doi.org/10.1155/ 2012/986134
  • F. Chen, Q. Zhong, F. Cannella, K. Sekiyama, and T. Fukuda, “Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,” International Journal of Advanced Robotic Systems, vol. 12, no. 4, Jan. 2015. [Online]. Available: http://dx.doi.org/10.5772/60044
  • Y. Dennemont, G. Bouyer, S. Otmane, and M. Mallem, “A discrete hidden markov models recognition module for temporal series: Application to real-time 3d hand gestures,” pp. 299–304, Oct. 2012. [Online]. Available: http://dx.doi.org/10.1109/IPTA.2012.6469509
  • U. of Cagliari, “Iris: Institutional research information system,” https://iris.unica.it/, 2023, accessed: [2-2-2025]. [Online]. Available: https://iris.unica.it/
  • M. K. Ahuja and A. Singh, “Static vision based hand gesture recognition using principal component analysis,” pp. 402 – 406, Oct. 2015. [Online]. Available: http: //dx.doi.org/10.1109/MITE.2015.7375353
  • A. Barkoky and N. M. Charkari, “Static hand gesture recognition of persian sign numbers using thinning method,” pp. 6548 – 6551, Jul. 2011. [Online]. Available: http://dx.doi.org/10.1109/ICMT.2011.6002201
  • H. Li, L. Yang, X. Wu, S. Xu, and Y. Wang, “Static hand gesture recognition based on hog with kinect,” pp. 271 – 273, Aug. 2012. [Online]. Available: http: //dx.doi.org/10.1109/IHMSC.2012.75
  • R. Wang, Z. Yu, M. Liu, Y. Wang, and Y. Chang, “Realtime visual static hand gesture recognition system and its fpga-based hardware implementation,” pp. 434 – 439, Oct. 2014. [Online]. Available: http://dx.doi.org/10.1109/ICOSP. 2014.7015043
  • M. M. Gharasuie and H. Seyedarabi, “Real-time dynamic hand gesture recognition using hidden markov models,” pp. 194–199, Sep. 2013. [Online]. Available: http://dx.doi.org/ 10.1109/IranianMVIP.2013.6779977
  • H. Y. Lai and H. J. Lai, “Real-time dynamic hand gesture recognition,” pp. 658–661, Jun. 2014. [Online]. Available: http://dx.doi.org/10.1109/IS3C.2014.177
  • A. Pradhan and B. Deepak, “Obtaining hand gesture parameters using image processing,” pp. 168–170, May 2015. [Online]. Available: http://dx.doi.org/10.1109/ICSTM.2015. 7225408
  • H. M. Gamal, H. M. Abdul-Kader, and E. A. Sallam, “Hand gesture recognition using fourier descriptors,” pp. 274–279, Nov. 2013. [Online]. Available: http://dx.doi.org/10.1109/ ICCES.2013.6707218
  • S. Ganapathyraju, “Hand gesture recognition using convexity hull defects to control an industrial robot,” pp. 63–67, Aug. 2013. [Online]. Available: http://dx.doi.org/10.1109/ICA.2013.6734047
  • X. Li, J. ho An, J. hong Min, and K.-S. Hong, “Hand gesture recognition by stereo camera using the thinning method,” pp. 3077–3080, Jul. 2011. [Online]. Available: http://dx.doi.org/10.1109/ICMT.2011.6001670
  • Z. Yang, Y. Li, W. Chen, and Y. Zheng, “Dynamic hand gesture recognition using hidden markov models,” pp. 360–365, Jul. 2012. [Online]. Available: http://dx.doi.org/ 10.1109/ICCSE.2012.6295092
  • L. K. Phadtare, R. S. Kushalnagar, and N. D. Cahill, “Detecting hand-palm orientation and hand shapes for sign language gesture recognition using 3d images,” pp. 29–32, Nov. 2012. [Online]. Available: http://dx.doi.org/10.1109/ WNYIPW.2012.6466652
  • D. Vishwakarma, R. Maheshwari, and R. Kapoor, “An efficient approach for the recognition of hand gestures from very low resolution images,” Apr. 2015. [Online]. Available: http://dx.doi.org/10.1109/CSNT.2015.84
  • L. Prasuhn, Y. Oyamada, Y. Mochizuki, and H. Ishikawa, “A hog-based hand gesture recognition system on a mobile device,” pp. 3973–3977, Oct. 2014. [Online]. Available: http://dx.doi.org/10.1109/ICIP.2014.7025807
  • R. Shrivastava, “A hidden markov model based dynamic hand gesture recognition system using opencv,” pp. 947– 950, Feb. 2013. [Online]. Available: http://dx.doi.org/10. 1109/IAdCC.2013.6514354
  • B. Pathak, A. S. Jalal, S. C. Agrawal, and C. Bhatnagar, “A framework for dynamic hand gesture recognition using key frames extraction,” pp. 1–4, Dec. 2015. [Online]. Available: http://dx.doi.org/10.1109/NCVPRIPG.2015.7490038
  • H.-M. Zhu and C.-M. Pun, “Real-time hand gesture recognition from depth image sequences,” pp. 49–52, Jul. 2012. [Online]. Available: http://dx.doi.org/10.1109/CGIV. 2012.13
  • T. Wan, Y. Wang, and J. Li, “Hand gesture recognition system using depth data,” pp. 1063–1066, Apr. 2012. [Online]. Available: http://dx.doi.org/10.1109/CECNet.2012.6201837
  • L. Li and S. Dai, “Bayesian neural network approach to hand gesture recognition system,” pp. 2019–2023, Aug. 2014. [Online]. Available: http://dx.doi.org/10.1109/ CGNCC.2014.7007487
  • Y. Chen, B. Luo, Y.-L. Chen, G. Liang, and X. Wu, “A real-time dynamic hand gesture recognition system using kinect sensor,” Dec. 2015. [Online]. Available: http://dx.doi.org/10.1109/ROBIO.2015.7419071
  • R. Harshitha, I. A. Syed, and S. Srivasthava, “Hci using hand gesture recognition for digital sand model,” pp. 453–457, Dec. 2013. [Online]. Available: http://dx.doi.org/ 10.1109/ICIIP.2013.6707633
  • S. Shiravandi, M. Rahmati, and F. Mahmoudi, “Hand gestures recognition using dynamic bayesian networks,” pp. 1–6, Apr. 2013. [Online]. Available: http://dx.doi.org/10. 1109/RIOS.2013.6595318
  • N. N. Bhat, Y. V. Venkatesh, U. Karn, and D. Vig, “Hand gesture recognition using self organizing map for human computer interaction,” pp. 734–738, Aug. 2013. [Online]. Available: http://dx.doi.org/10.1109/ICACCI.2013.6637265
  • X. Wu, C. Yang, Y. Wang, H. Li, and S. Xu, “An intelligent interactive system based on hand gesture recognition algorithm and kinect,” pp. 294–298, Oct. 2012. [Online]. Available: http://dx.doi.org/10.1109/ISCID.2012.225
  • A. R. Asif, A. Waris, S. O. Gilani, M. Jamil, H. Ashraf, M. Shafique, and I. K. Niazi, “Performance evaluation of convolutional neural network for hand gesture recognition using emg,” Sensors, vol. 20, no. 6, p. 1642, Mar. 2020. [Online]. Available: http://dx.doi.org/10.3390/s20061642
  • R. Antonius and H. Tjahyadi, “Electromyography gesture identification using cnn-rnn neural network for controlling quadcopters,” Journal of Physics: Conference Series, vol. 1858, no. 1, p. 012075, Apr. 2021. [Online]. Available: http://dx.doi.org/10.1088/1742-6596/1858/1/012075
  • V. Adithya and R. Rajesh, “Hand gestures for emergency situations: A video dataset based on words from indian sign language,” Data in Brief, vol. 31, p. 106016, Aug. 2020. [Online]. Available: http://dx.doi.org/10.1016/j.dib. 2020.106016
  • G. Yuan, X. Liu, Q. Yan, S. Qiao, Z. Wang, and L. Yuan, “Hand gesture recognition using deep feature fusion network based on wearable sensors,” IEEE Sensors Journal, p. 1, 2020. [Online]. Available: http://dx.doi.org/ 10.1109/JSEN.2020.3014276
  • H. Zhang, Z.-H. Bo, J.-H. Yong, and F. Xu, “Interactionfusion: real-time reconstruction of hand poses and deformable objects in hand-object interactions,” ACM Transactions on Graphics, vol. 38, no. 4, pp. 1-11, Jul. 2019. [Online]. Available: http://dx.doi.org/10.1145/3306346.3322998
  • K. Lai and S. N. Yanushkevich, “Cnn+rnn depth and skeleton based dynamic hand gesture recognition,” pp. 3451-3456, Aug. 2018. [Online]. Available: http://dx.doi. org/10.1109/ICPR.2018.8545718
  • J.Wan, Y. Zhao, S. Zhou, I. Guyon, S. Escalera, and S. Z. Li, “Chalearn looking at people rgb-d isolated and continuous datasets for gesture recognition,” June 2016.
  • A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T. Delbruck, M. Flickner, and D. Modha, “A low power, fully event-based gesture recognition system,” July 2017.
  • P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz, “Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network,” June 2016.
  • Z. Zhou, K.-S. Lui, V. W. Tam, and E. Y. Lam, “Applying (3+2+1)d residual neural network with frame selection for hong kong sign language recognition,” pp. 4296-4302, Jan. 2021. [Online]. Available: http: //dx.doi.org/10.1109/ICPR48806.2021.9412075
  • U. von Agris, M. Knorr, and K.-F. Kraiss, “The significance of facial features for automatic sign language recognition,” pp. 1-6, Sep. 2008. [Online]. Available: http://dx.doi.org/10. 1109/AFGR.2008.4813472
  • S. Albanie, G. Varol, L. Momeni, H. Bull, T. Afouras, H. Chowdhury, N. Fox, B. Woll, R. Cooper, A. McParland, and A. Zisserman, “Bbc-oxford british sign language dataset,” 2021. [Online]. Available: https://arxiv.org/abs/ 2111.03635
  • J. Fink, B. Frenay, L. Meurant, and A. Cleve, “Lsfb-cont and lsfb-isol: Two new datasets for vision-based sign language recognition,” pp. 1-8, Jul. 2021. [Online]. Available: http://dx.doi.org/10.1109/IJCNN52387.2021.9534336
  • C. C. de Amorim, D. Macˆedo, and C. Zanchettin, “Spatialtemporal graph convolutional networks for sign language recognition,” pp. 646-657, 2019. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-30493-5 59
  • O. M. Sincan and H. Y. Keles, “Autsl: A large scale multimodal turkish sign language dataset and baseline methods,” IEEE Access, vol. 8, pp. 181 340-181 355, 2020. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2020. 3028072
  • J. P. Vasconez, L. I. Barona Lopez, L. Valdivieso Caraguay, and M. E. Benalcazar, “Hand gesture recognition using emg-imu signals and deep q-networks,” Sensors, vol. 22, no. 24, p. 9613, Dec. 2022. [Online]. Available: http: //dx.doi.org/10.3390/s22249613
  • medRxiv, “medrxiv: The preprint server for health sciences,” https://www.medrxiv.org/, 2023, accessed: [2-2-2025]. [Online]. Available: https://www.medrxiv.org/
  • S. Shaik and S. Saraswathi, “Enhance the ai virtual system accuracy with novel hand gesture recognition algorithm comparing to convolutional neural network,” vol. 491, p. 04022, 2024. [Online]. Available: https: //doi.org/10.1051/e3sconf/202449104022
  • X.-H. Zhang, J.-J. Wang, X. Wang, and X.-L. Ma, “Improvement of dynamic hand gesture recognition based on hmm algorithm,” pp. 401-406, Jun. 2016. [Online]. Available: http://dx.doi.org/10.1109/ISAI.2016.0091
  • Y. Li, X. Feng, Y. Xu, X. Dong, Z. Xu, J. Huang, and L. Lu, “A dynamic hand gesture recognition model based on the improved dynamic time warping algorithm,” pp. 1-6, Sep. 2019. [Online]. Available: http://dx.doi.org/10.23919/ IConAC.2019.8895002
  • A. Mohanarathinam, K. Dharani, R. Sangeetha, G. Aravindh, and P. Sasikala, “Study on hand gesture recoginition by using machine learning,” pp. 1498-1501, Nov. 2020. [Online]. Available: http://dx.doi.org/10.1109/ ICECA49313.2020.9297513
  • A. V. and R. R., “A deep convolutional neural network approach for static hand gesture recognition,” Procedia Computer Science, vol. 171, pp. 2353-2361, 2020. [Online]. Available: http://dx.doi.org/10.1016/j.procs.2020.04.255
  • O. Mazhar, S. Ramdani, and A. Cherubini, “A deep learning framework for recognizing both static and dynamic gestures,” Sensors, vol. 21, no. 6, p. 2227, Mar. 2021. [Online]. Available: http://dx.doi.org/10.3390/s21062227
  • S.-H. Yang, W.-R. Chen, W.-J. Huang, and Y.-P. Chen, “Ddanet: Dual-path depth-aware attention network for fingerspelling recognition using rgb-d images,” IEEE Access, vol. 9, pp. 7306 – 7322, 2021. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2020.3046667
  • P. Koch, M. Dreier, M. Maass, M. Bohme, H. Phan, and A. Mertins, “A recurrent neural network for hand gesture recognition based on accelerometer data,” pp. 5088-5091, Jul. 2019. [Online]. Available: http://dx.doi.org/10.1109/ EMBC.2019.8856844
  • W. Zhang, J. Wang, and F. Lan, “Dynamic hand gesture recognition based on short-term sampling neural networks,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 110 – 120, Jan. 2021. [Online]. Available: http: //dx.doi.org/10.1109/JAS.2020.1003465
  • W. Yu and E. N. Sanchez, Eds., Advances in Computational Intelligence: Proceedings of the IWACI’09 Workshop, 22nd- 23rd June 2009, Mexico City, ser. Advances in Intelligent and Soft Computing. Berlin, Heidelberg: Springer, 2009, vol. 61, presents latest research in Computational Intelligence.
  • E. Tsironi, P. Barros, C. Weber, and S. Wermter, “An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition,” Neurocomputing, vol. 268, pp. 76-86, Dec. 2017. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2016.12.088
  • W. Tao, M. C. Leu, and Z. Yin, “American sign language alphabet recognition using convolutional neural networks with multiview augmentation and inference fusion,” Engineering Applications of Artificial Intelligence, vol. 76, pp. 202 – 213, Nov. 2018. [Online]. Available: http://dx.doi.org/10.1016/j.engappai.2018.09.006
  • C. Bhuvaneshwari and A. Manjunathan, “Advanced gesture recognition system using long-term recurrent convolution network,” Materials Today: Proceedings, vol. 21, pp. 731 – 733, 2020. [Online]. Available: http://dx.doi.org/10.1016/j. matpr.2019.06.748
  • N. B. Ibrahim, M. M. Selim, and H. H. Zayed, “An automatic arabic sign language recognition system (arslrs),” Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 4, pp. 470 – 477, Oct. 2018. [Online]. Available: http://dx.doi.org/10.1016/j.jksuci.2017.09.007
  • M. Oliveira, H. Chatbri, Y. Ferstl, M. Farouk, S. Little, N. E. O’Connor, and A. Sutherland, “A dataset for irish sign language recognition,” Aug. 2017.
  • Y. SHI, Y. LI, X. FU, M. Kaibin, and M. Qiguang, “Review of dynamic gesture recognition,” Virtual Reality amp; Intelligent Hardware, vol. 3, no. 3, pp. 183 – 206, Jun. 2021. [Online]. Available: http://dx.doi.org/10.1016/j. vrih.2021.05.001
  • L. Pigou, A. van den Oord, S. Dieleman, M. Van Herreweghe, and J. Dambre, “Beyond temporal pooling: Recurrence and temporal convolutions for gesture recognition in video,” International Journal of Computer Vision, vol. 126, no. 24, pp. 430 – 439, Oct. 2016. [Online]. Available: http://dx.doi.org/10.1007/s11263-016-0957-7
  • D. Jiang, G. Li, Y. Sun, J. Kong, B. Tao, and D. Chen, “Grip strength forecast and rehabilitative guidance based on adaptive neural fuzzy inference system using semg,” Personal and Ubiquitous Computing, vol. 26, no. 4, pp. 1215 – 1224, Jul. 2019. [Online]. Available: http: //dx.doi.org/10.1007/s00779-019-01268-3
  • P. Sharma and R. S. Anand, “Depth data and fusion of feature descriptors for static gesture recognition,” IET Image Processing, vol. 14, no. 5, pp. 909 – 920, Mar. 2020. [Online]. Available: http://dx.doi.org/10.1049/iet-ipr.2019. 0230
  • Q. Gao, U. E. Ogenyi, J. Liu, Z. Ju, and H. Liu, “A two-stream cnn framework for american sign language recognition based on multimodal data fusion,” pp. 107 – 118, Aug. 2019. [Online]. Available: http://dx.doi.org/10. 1007/978-3-030-29933-0 9
  • Z. Gao, P. Wang, H. Wang, M. Xu, and W. Li, “A review of dynamic maps for 3d human motion recognition using convnets and its improvement,” Neural Processing Letters, vol. 52, no. 2, pp. 1501 – 1515, Jul. 2020. [Online]. Available: http://dx.doi.org/10.1007/s11063-020-10320-w
  • K. Yin and J. Read, “Better sign language translation with stmc-transformer,” 2020. [Online]. Available: https: //arxiv.org/abs/2004.00588
  • Q. De Smedt, H. Wannous, and J.-P. Vandeborre, “3d hand gesture recognition by analysing set-of-joints trajectories,” pp. 86 – 97, 2018. [Online]. Available: http://dx.doi.org/10. 1007/978-3-319-91863-1 7
  • ——, “Skeleton-based dynamic hand gesture recognition,” June 2016.
  • S. Y. Boulahia, E. Anquetil, F. Multon, and R. Kulpa, “Dynamic hand gesture recognition based on 3d pattern assembled trajectories,” pp. 1 – 6, Nov. 2017. [Online]. Available: http://dx.doi.org/10.1109/IPTA.2017.8310146
  • J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-based action recognition using spatio-temporal lstm network with trust gates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 3007 – 3021, Dec. 2018. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2017.2771306
  • D. Konstantinidis, K. Dimitropoulos, and P. Daras, “A deep learning approach for analyzing video and skeletal features in sign language recognition,” pp. 1 – 6, Oct. 2018. [Online]. Available: http://dx.doi.org/10.1109/IST.2018.8577085
  • J. C. Nunez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Velez, “Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition,” Pattern Recognition, vol. 76, pp. 80 – 94, Apr. 2018. [Online]. Available: http: //dx.doi.org/10.1016/j.patcog.2017.10.033
  • S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton-based action recognition,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available: http://dx.doi.org/10.1609/aaai.v32i1.12328
  • C. Ma, A. Wang, G. Chen, and C. Xu, “Hand jointsbased gesture recognition for noisy dataset using nested interval unscented kalman filter with lstm network,” The Visual Computer, vol. 34, no. 6-8, pp. 1053 – 1063, May 2018. [Online]. Available: http://dx.doi.org/10.1007/ s00371-018-1556-0
  • W. Wei, Y. Wong, Y. Du, Y. Hu, M. Kankanhalli, and W. Geng, “A multi-stream convolutional neural network for semg-based gesture recognition in musclecomputer interface,” Pattern Recognition Letters, vol. 119, pp. 131 – 138, Mar. 2019. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2017.12.005
  • C. Si,W. Chen,W.Wang, L.Wang, and T. Tan, “An attention enhanced graph convolutional lstm network for skeletonbased action recognition,” June 2019.
  • S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu, “Sign language recognition via skeleton-aware multi-model ensemble,” 2021. [Online]. Available: https://arxiv.org/abs/ 2110.06161
  • ——, “Skeleton aware multi-modal sign language recognition,” pp. 3413 – 3423, June 2021.
  • R. Rastgoo, K. Kiani, and S. Escalera, “Sign language recognition: A deep survey,” Expert Systems with Applications, vol. 164, p. 113794, Feb. 2021. [Online]. Available: http://dx.doi.org/10.1016/j.eswa.2020.113794
  • H. Zhang, D. Liu, and Z. Xiong, “Two-stream action recognition-oriented video super-resolution,” October 2019.
  • U. Cote-Allard, C. L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin, K. Glette, F. Laviolette, and B. Gosselin, “Deep learning for electromyographic hand gesture signal classification using transfer learning,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 4, pp. 760 – 771, Apr. 2019. [Online]. Available: http://dx.doi.org/10.1109/TNSRE.2019.2896269
  • H. Wei, R. Jafari, and N. Kehtarnavaz, “Fusion of video and inertial sensing for deep learning–based human action recognition,” Sensors, vol. 19, no. 17, p. 3680, Aug. 2019. [Online]. Available: http://dx.doi.org/10.3390/s19173680
  • K. H. Lee, J. Y. Min, and S. Byun, “Electromyogram-based classification of hand and finger gestures using artificial neural networks,” Sensors, vol. 22, no. 1, p. 225, Dec. 2021. [Online]. Available: http://dx.doi.org/10.3390/s22010225
  • G. Dougherty, Pattern Recognition and Classification: An Introduction. New York, NY: Springer, 2013.
  • B.-A. Awaluddin, C.-T. Chao, and J.-S. Chiou, “A hybrid image augmentation technique for user- and environment-independent hand gesture recognition based on deep learning,” Mathematics, vol. 12, no. 9, p. 1393, May 2024. [Online]. Available: http://dx.doi.org/10.3390/ math12091393
  • M. Garg, D. Ghosh, and P. M. Pradhan, “Gestformer: Multiscale wavelet pooling transformer network for dynamic hand gesture recognition,” 2024. [Online]. Available: https://arxiv.org/abs/2405.11180
  • L. I. Barona Lopez, F. M. Ferri, J. Zea, L. Valdivieso Caraguay, and M. E. Benalcazar, “Cnnlstm and post-processing for emg-based hand gesture recognition,” Intelligent Systems with Applications, vol. 22, p. 200352, Jun. 2024. [Online]. Available: http://dx.doi.org/10.1016/j.iswa.2024.200352
  • G. Zhou, Z. Cui, and J. Qi, “Fgdsnet: A lightweight hand gesture recognition network for human robot interaction,” IEEE Robotics and Automation Letters, vol. 9, no. 4, pp. 3076 – 3083, Apr. 2024. [Online]. Available: http: //dx.doi.org/10.1109/LRA.2024.3362144
  • P. Balaji and M. Ranjan Prusty, “Multimodal fusion hierarchical self-attention network for dynamic hand gesture recognition,” Journal of Visual Communication and Image Representation, vol. 98, p. 104019, Feb. 2024. [Online]. Available: http://dx.doi.org/10.1016/j.jvcir.2023.104019
  • G. Bhaumik and M. C. Govil, “Spatnet: a spatial feature attention network for hand gesture recognition,” Multimedia Tools and Applications, vol. 83, no. 14, pp. 41 805 – 41 822, Oct. 2023. [Online]. Available: http://dx.doi.org/10.1007/s11042-023-16988-1
  • H.-Q. Nguyen, T.-H. Le, T.-K. Tran, H.-N. Tran, T.-H. Tran, T.-L. Le, H. Vu, C. Pham, T. P. Nguyen, and H. T. Nguyen, “Hand gesture recognition from wrist-worn camera for human-machine interaction,” IEEE Access, vol. 11, pp. 53 262 – 53 274, 2023. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2023.3279845
  • Y. Zhang, W. Kang, and W. Song, “Robust and accurate hand gesture authentication with cross-modality local-global behavior analysis,” IEEE Transactions on Information Forensics and Security, vol. 19, pp. 8630 – 8643, 2024. [Online]. Available: http://dx.doi.org/10.1109/TIFS.2024. 3451367
  • S. Birkeland, L. J. Fjeldvik, N. Noori, S. R. Yeduri, and L. R. Cenkeramaddi, “Thermal video-based hand gestures recognition using lightweight cnn,” Journal of Ambient Intelligence and Humanized Computing, vol. 15, no. 12, pp. 3849 – 3860, Sep. 2024. [Online]. Available: http://dx.doi.org/10.1007/s12652-024-04851-6
  • M. Garg, D. Ghosh, and P. M. Pradhan, “Mvtn: A multiscale video transformer network for hand gesture recognition,” 2024. [Online]. Available: https://arxiv.org/abs/2409.03890
  • J. Shin, A. S. M. Miah, S. Konnai, I. Takahashi, and K. Hirooka, “Hand gesture recognition using semg signals with a multi-stream time-varying feature enhancement approach,” Scientific Reports, vol. 14, no. 1, Sep. 2024. [Online]. Available: http://dx.doi.org/10.1038/s41598-024-72996-7
  • A. S. M. Miah, N. Hassan, M. Maniruzzaman, N. Asai, and J. Shin, “Emg-based hand gesture recognition through diverse domain feature enhancement and machine learningbased approach,” 2024. [Online]. Available: https://arxiv. org/abs/2408.13723
  • H. Mahmud, M. M. Morshed, and M. K. Hasan, “Quantized depth image and skeleton-based multimodal dynamic hand gesture recognition,” The Visual Computer, vol. 40, no. 1, pp. 11 – 25, Jan. 2023. [Online]. Available: http://dx.doi.org/10.1007/s00371-022-02762-1
  • Z. Dozdor, Z. Kalafatic, Ban, and T. Hrkaz, “Ty-net: Transforming yolo for hand gesture recognition,” IEEE Access, vol. 11, pp. 140 382 – 140 394, 2023. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2023.3341702
  • Yaseen, O.-J. Kwon, J. Kim, S. Jamil, J. Lee, and F. Ullah, “Next-gen dynamic hand gesture recognition: Mediapipe, inception-v3 and lstm-based enhanced deep learning model,” Electronics, vol. 13, no. 16, p. 3233, Aug. 2024. [Online]. Available: http://dx.doi.org/10.3390/ electronics13163233
  • J. W. Smith, S. Thiagarajan, R. Willis, Y. Makris, and M. Torlak, “Improved static hand gesture classification on deep convolutional neural networks using novel sterile training technique,” IEEE Access, vol. 9, pp. 10 893 – 10 902, 2023. [Online]. Available: http://dx.doi.org/10. 1109/ACCESS.2021.3051454
  • D. Sarma, H. P. J. Dutta, K. S. Yadav, M. Bhuyan, and R. H. Laskar, “Attention-based hand semantic segmentation and gesture recognition using deep networks,” Evolving Systems, vol. 15, no. 1, pp. 185 – 201, Jul. 2023. [Online]. Available: http://dx.doi.org/10.1007/s12530-023-09512-1
  • Z. Zhang, Q. Shen, and Y. Wang, “Electromyographic hand gesture recognition using convolutional neural network with multi-attention,” Biomedical Signal Processing and Control, vol. 91, p. 105935, May 2024.
  • S. Zhang, H. Zhou, R. Tchantchane, and G. Alici, “A wearable human-machine-interface (hmi) system based on colocated emg-pfmg sensing for hand gesture recognition,” IEEE/ASME Transactions on Mechatronics, pp. 1 – 12, 2024. [Online]. Available: http://dx.doi.org/10.1109/ TMECH.2024.3386929
  • N. Fadel and E. I. A. Kareem, “Real-time hand gesture recognition based on multi-connect architecture associative memory in human computer interaction,” vol. 3061, p. 030003, 2024. [Online]. Available: http://dx.doi.org/10. 1063/5.0203656
  • A. Chandrabose, X. Fernando, and E.Mercier-Laurent, Eds., Computer, Communication, and Signal Processing. Smart Solutions Towards SDG: 8th IFIP TC 12 International Conference, ICCCSP 2024, Chennai, India, March 20-22, 2024, Revised Selected Papers, ser. IFIP Advances in Information and Communication Technology. Cham, Switzerland: Springer, 2024, vol. 723.
  • Q. U. of Technology, “Qut eprints,” https://eprints.qut. edu.au/, 2023, accessed: [2-2-2025]. [Online]. Available: https://eprints.qut.edu.au/
  • A. Kumar and R. Saini, “A comparative study of machine learning techniques for hand gesture recognition to guide multimedia operation,” COMPUTER, vol. 24, no. 8, pp. 145 – 160, 2024.
  • T. Jawalkar, S. S. Khalate, S. A. Medhe, and K. S. Palaskar, “Hand gesture recognition using ai/ml,” International Journal of Advanced Engineering Application, vol. 10, pp. 95– 115, 2024.
  • E. Andrei, T. Cornel, G. Culea, S. B. Constantin, and U. A. Gabriel, “Romanian sign language and mime-gesture recognition,” International Journal of Advanced Computer Science and Applications, vol. 15, no. 8, 2024. [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2024.0150888
  • L. Zholshiyeva, Z. Manbetova, D. Kaibassova, A. Kassymova, Z. Tashenova, S. Baizhumanov, A. Yerzhanova, and K. Aikhynbay, “Human-machine interactions based on hand gesture recognition using deep learning methods,” International Journal of Electrical and Computer Engineering (IJECE), vol. 14, no. 1, p. 741, Feb. 2024. [Online]. Available: http://dx.doi.org/10.11591/ijece.v14i1.pp741-748
  • X. Savarimuthu, S. Subramani, and A. N. J. Raj, Eds., Artificial Intelligence for Multimedia Information Processing: Tools and Applications. Boca Raton, FL: CRC Press, 2024, 69 B/W Illustrations.
  • W. Han, M. Hao, Y. Yuan, and P. Liu, “Fusion enhancement of yolov5 and copula bayesian classifier for hand gesture recognition in smart sports venues,” IEEE Access, vol. 12, pp. 67 005 – 67 012, 2024. [Online]. Available: http: //dx.doi.org/10.1109/ACCESS.2024.3398142
  • H. Ansar, N. A. Mudawi, S. S. Alotaibi, A. Alazeb, B. I. Alabdullah, M. Alonazi, and J. Park, “Hand gesture recognition for characters understanding using convex hull landmarks and geometric features,” IEEE Access, vol. 11, pp. 82 065 – 82 078, 2023. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2023.3300712
  • C. M. Suryateja, S. Boppu, L. R. Cenkeramaddi, and B. Ramkumar, “Hand gesture recognition system in the complex background for edge computing devices,” pp. 13 – 18, Dec. 2022. [Online]. Available: http: //dx.doi.org/10.1109/iSES54909.2022.00016
  • C. Schuessler, W. Zhang, J. Br¨aunig, M. Hoffmann, M. Stelzig, and M. Vossiek, “Radar-based recognition of static hand gestures in american sign language,” 2024. [Online]. Available: https://arxiv.org/abs/2402.12800
  • O. Y. Fadhil, B. S. Mahdi, and A. R. Abbas, “Using vgg models with intermediate layer feature maps for static hand gesture recognition,” Baghdad Science Journal, Feb. 2023. [Online]. Available: http://dx.doi.org/10.21123/bsj. 2023.7364
  • J. P. Sahoo, S. P. Sahoo, S. Ari, and S. K. Patra, “Derefnet: Dual-stream dense residual fusion network for static hand gesture recognition,” Displays, vol. 77, p. 102388, Apr. 2023. [Online]. Available: http://dx.doi.org/ 10.1016/j.displa.2023.102388
  • Y. Jiang, L. Song, J. Zhang, Y. Song, and M. Yan, “Multicategory gesture recognition modeling based on semg and imu signals,” Sensors, vol. 22, no. 15, p. 5855, Aug. 2022. [Online]. Available: http://dx.doi.org/10.3390/s22155855
  • M. Al-Hammadi, M. A. Bencherif, M. Alsulaiman, G. Muhammad, M. A. Mekhtiche, W. Abdul, Y. A. Alohali, T. S. Alrayes, H. Mathkour, M. Faisal, M. Algabri, H. Altaheri, T. Alfakih, and H. Ghaleb, “Spatial attentionbased 3d graph convolutional neural network for sign language recognition,” Sensors, vol. 22, no. 12, p. 4558, Jun. 2022. [Online]. Available: http://dx.doi.org/10.3390/ s22124558
  • A. S. M. Miah, M. A. M. Hasan, Y. Tomioka, and J. Shin, “Hand gesture recognition for multi-culture sign language using graph and general deep learning network,” IEEE Open Journal of the Computer Society, vol. 5, pp. 144 – 155, 2024. [Online]. Available: http://dx.doi.org/10.1109/OJCS.2024.3370971
  • Q. Li, Z. Luo, R. Qi, and J. Zheng, “Deeptpa-net: A deep triple attention network for semg-based hand gesture recognition,” IEEE Access, vol. 11, pp. 96 797 – 96 807, 2023. [Online]. Available: http://dx.doi.org/10. 1109/ACCESS.2023.3312219
  • U. Imran, A. Waris, S. O. Gilani, J. Iqbal, M. Jamil, G. E. Eldesoky, and S. Mushtaq, “Patient-specific movement regime: Investigating the potential of upper-extremity motions for intelligent myoelectric prosthetic control,” IEEE Access, vol. 12, pp. 35 663–35 682, 2024. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2024.3365639
  • arXiv, “arxiv.org e-print archive: Computer science,” 2025, accessed: 2025-02-02. [Online]. Available: https: //arxiv.org/search/cs
  • V. Sharmila, S. Kannadhasan, A. R. Kannan, P. Sivakumar, and V. Vennila, Eds., Challenges in Information, Communication, and Computing Technology: Proceedings of the 2nd International Conference on Challenges in Information, Communication, and Computing Technology (ICCICCT 2024), April 26th & 27th, 2024, Namakkal, Tamil Nadu, India. Boca Raton, FL: CRC Press, 2024.
  • V. Mottini, “Precision neural interfaces through intrinsically stretchable electronics,” Ph.D. dissertation, Michigan State University, 2024.
  • I. Society, “Insight society,” https://insightsociety.org/, 2023, accessed: [2-2-2025]. [Online]. Available: https: //insightsociety.org/
  • S. Manoharan, A. Tugui, and Z. Baig, Eds., Proceedings of the 4th International Conference on Artificial Intelligence and Smart Energy (ICAIS 2024), Volume 2. Springer Nature, 2024.
  • T. N. S. R. L. M. (TNSRLM), “Tamil nadu state rural livelihoods mission,” https://www.tnsroindia.org.in/, 2023, accessed: [2-2-2025]. [Online]. Available: https: //www.tnsroindia.org.in/
  • J. Shin, A. S. M. Miah, S. Konnai, I. Takahashi, and K. Hirooka, “Hand gesture recognition using semg signals with a multi-stream time-varying feature enhancement approach,” Scientific Reports, vol. 14, no. 1, Sep. 2024. [Online]. Available: http://dx.doi.org/10.1038/s41598-024-72996-7
  • Sunanda, A. Balmik, and A. Nandy, “A novel feature fusion technique for robust hand gesture recognition,” Multimedia Tools and Applications, vol. 83, no. 25, pp. 65 815 – 65 831, Jan. 2024. [Online]. Available: http://dx.doi.org/10.1007/s11042-024-18173-4
  • F. A. Farid, N. Hashim, J. B. Abdullah, M. R. Bhuiyan, M. Kairanbay, Z. Yusoff, H. A. Karim, S. Mansor, M. T. Sarker, and G. Ramasamy, “Single shot detector cnn and deep dilated masks for vision-based hand gesture recognition from video sequences,” IEEE Access, vol. 12, pp. 28 564 – 28 574, 2024. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2024.3360857
  • M. Jaiswal, V. Sharma, A. Sharma, S. Saini, and R. Tomar, “Quantized cnn-based efficient hardware architecture for real-time hand gesture recognition,” Microelectronics Journal, vol. 151, p. 106345, Sep. 2024. [Online]. Available: http://dx.doi.org/10.1016/j.mejo.2024.106345
  • J. Tang, K. Gou, C. Wang, M. Wei, Q. Tan, and G. Weng, “Self-powered and 3d printable soft sensor for human health monitoring, object recognition, and contactless hand gesture recognition,” Advanced Functional Materials, vol. 34, no. 52, Sep. 2024. [Online]. Available: http://dx.doi.org/10.1002/adfm.202411172
  • Y. Wang, Y. Tian, J. Zhu, H. She, Y. Jiang, Z. Jiang, and H. Yokoi, “A hand gesture recognition strategy based on virtual-dimension increase of emg,” Cyborg and Bionic Systems, vol. 5, Jan. 2024. [Online]. Available: http://dx.doi.org/10.34133/cbsystems.0066
  • A. Sen, S. Dombe, T. K. Mishra, and R. Dash, “Hgr-fyolo: a robust hand gesture recognition system for the normal and physically impaired person using frozen yolov5,” Multimedia Tools and Applications, vol. 83, no. 30, pp. 73 797 – 73 815, Feb. 2024. [Online]. Available: http://dx.doi.org/10.1007/s11042-024-18464-w
  • Z. Mohammadi, A. Akhavanpour, R. Rastgoo, and M. Sabokrou, “Diverse hand gesture recognition dataset,” Multimedia Tools and Applications, vol. 83, no. 17, pp. 50 245 – 50 267, Nov. 2023. [Online]. Available: http://dx.doi.org/10.1007/s11042-023-17268-8
  • E. Bamani, E. Nissinman, I. Meir, L. Koenigsberg, and A. Sintov, “Ultra-range gesture recognition using a web-camera in human-robot interaction,” Engineering Applications of Artificial Intelligence, vol. 132, p. 108443, Jun. 2024. [Online]. Available: http://dx.doi.org/10.1016/j. engappai.2024.108443
  • Sundaram and B. C. Sahana, “Multivariate emg signal based automated hand gestures recognition framework for elder care,” International Journal of Precision Engineering and Manufacturing, Aug. 2024. [Online]. Available: http: //dx.doi.org/10.1007/s12541-024-01116-2
  • A. Shaaban, M. Strobel, W. Furtner, R. Weigel, and F. Lurz, “Rt-scnns: real-time spiking convolutional neural networks for a novel hand gesture recognition using time-domain mm-wave radar data,” International Journal of Microwave and Wireless Technologies, vol. 16, no. 5, pp. 783 – 795, Jan. 2024. [Online]. Available: http: //dx.doi.org/10.1017/S1759078723001575
  • T.-H. Tsai, Y.-C. Ho, P.-T. Chi, and T.-J. Chen, “A deep neural network for hand gesture recognition from rgb image in complex background,” Signal, Image and Video Processing, vol. 18, no. S1, pp. 861 – 872, May 2024. [Online]. Available: http://dx.doi.org/10.1007/ s11760-024-03198-x
  • S. Padmakala, S. O. Husain, E. Poornima, P. Dutta, and M. Soni, “Hyperparameter tuning of deep convolutional neural network for hand gesture recognition,” p. 1–4, Aug. 2024. [Online]. Available: http://dx.doi.org/10.1109/ NMITCON62075.2024.10698984
  • S. N. Uke and A. Zade, “Optimal video processing and soft computing algorithms for human hand gesture recognition from real-time video,” Multimedia Tools and Applications, vol. 83, no. 17, pp. 50 425 – 50 447, Nov. 2023. [Online]. Available: http://dx.doi.org/10.1007/s11042-023-17608-8
  • K. Bimbraw, A. Talele, and H. K. Zhang, “Hand gesture classification based on forearm ultrasound video snippets using 3d convolutional neural networks,” 2024. [Online]. Available: https://arxiv.org/abs/2409.16431
  • S. Misal, “Hand gesture recognition using deep learning,” International Journal of Innovative Science and Research Technology (IJISRT), pp. 69 – 72, Aug. 2024. [Online]. Available: http://dx.doi.org/10.38124/ijisrt/ IJISRT24AUG154
  • Q. Gao, Y. Chen, Z. Ju, and Y. Liang, “Dynamic hand gesture recognition based on 3d hand pose estimation for human-robot interaction,” IEEE Sensors Journal, vol. 22, no. 18, pp. 17 421 – 17 430, Sep. 2022. [Online]. Available: http://dx.doi.org/10.1109/JSEN.2021.3059685
  • M. Alonazi, H. Ansar, N. A. Mudawi, S. S. Alotaibi, N. A. Almujally, A. Alazeb, A. Jalal, J. Kim, and M. Min, “Smart healthcare hand gesture recognition using cnn-based detector and deep belief network,” IEEE Access, vol. 11, pp. 84 922 – 84 933, 2023. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2023.3289389
  • G. Park, V. K. Chandrasegar, and J. Koh, “Accuracy enhancement of hand gesture recognition using cnn,” IEEE Access, vol. 11, pp. 26 496 – 26 501, 2023. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2023.3254537
  • M. Zhang, Z. Zhou, T. Wang, and W. Zhou, “A lightweight network deployed on arm devices for hand gesture recognition,” IEEE Access, vol. 11, pp. 45 493 – 45 503, 2023. [Online]. Available: http://dx.doi.org/10. 1109/ACCESS.2023.3273713
  • S. Savas and A. Erg¨uzen, “Hand gesture recognition with two stage approach using transfer learning and deep ensemble learning,” 2023. [Online]. Available: https: //arxiv.org/abs/2309.11610
  • F. Jafari and A. Basu, “Two-dimensional parallel spatiotemporal pyramid pooling for hand gesture recognition,” IEEE Access, vol. 11, pp. 133 755 – 133 766, 2023. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2023. 3336591
  • T. L. Dang, S. D. Tran, T. H. Nguyen, S. Kim, and N. Monet, “An improved hand gesture recognition system using keypoints and hand bounding boxes,” ScienceDirect, vol. 16, p. 100251, Dec. 2022. [Online]. Available: http://dx.doi.org/10.1016/j.array.2022.100251
  • X. Pan, T. Jiang, X. Li, X. Ding, Y. Wang, and Y. Li, “Dynamic hand gesture detection and recognition with wifi signal based on 1d-cnn,” pp. 1 – 6, May 2019. [Online]. Available: http://dx.doi.org/10.1109/ICCW.2019.8756690
  • V. Chang, R. O. Eniola, L. Golightly, and Q. A. Xu, “An exploration into human-computer interaction: Hand gesture recognition management in a challenging environment,” SN Computer Science, vol. 4, no. 5, Jun. 2023. [Online]. Available: http://dx.doi.org/10.1007/s42979-023-01751-y
  • J. Shin, A. S. M. Miah, S. Konnai, I. Takahashi, and K. Hirooka, “Hand gesture recognition using semg signals with a multi-stream time-varying feature enhancement approach,” Scientific Reports, vol. 14, no. 1, Sep. 2024. [Online]. Available: http://dx.doi.org/10.1038/s41598-024-72996-7
  • R. K. Pathan, M. Biswas, S. Yasmin, M. U. Khandaker, M. Salman, and A. A. F. Youssef, “Retracted article: Sign language recognition using the fusion of image and hand landmarks through multi-headed convolutional neural network,” Scientific Reports, vol. 13, no. 1, Oct. 2023. [Online]. Available: http://dx.doi.org/10.1038/ s41598-023-43852-x
  • J. Yu, M. Qin, and S. Zhou, “Dynamic gesture recognition based on 2d convolutional neural network and feature fusion,” Scientific Reports, vol. 12, no. 1, Mar. 2022. [Online]. Available: http://dx.doi.org/10.1038/s41598-022-08133-z
  • H. Li and H. Guo, “Design of bionic robotic hand gesture recognition system based on machine vision,” pp. 960 – 964, May 2022. [Online]. Available: http: //dx.doi.org/10.1109/CVIDLICCEA56201.2022.9825148
  • A. Kaur and S. Bansal, “Deep learning for dynamic hand gesture recognition: Applications, challenges and future scope,” pp. 1–6, Nov. 2022. [Online]. Available: http://dx.doi.org/10.1109/IMPACT55510.2022.10029100
  • H. Arwoko, E. M. Yuniarno, and M. H. Purnomo, “Hand gesture recognition based on keypoint vector,” pp. 530 – 533, Aug. 2022. [Online]. Available: http: //dx.doi.org/10.1109/IES55876.2022.9888333
  • R. A. Muchtar, R. Yuniarti, and A. Komarudin, “Hand gesture recognition for controlling game objects using two-stream faster region convolutional neural networks methods,” pp. 59 – 64, Nov. 2022. [Online]. Available: http://dx.doi.org/10.1109/ICITRI56423.2022.9970207
  • Y. Wang, J. Zhang, and X. Zhao, “Research on hand gesture recognition based on millimeter wave radar,” pp. 205 – 209, Jan. 2023. [Online]. Available: http: //dx.doi.org/10.1109/ICCECE58074.2023.10135494
  • G. Beneke, T. B. Winkler, K. Raab, M. A. Brems, F. Kammerbauer, P. Gerhards, K. Knobloch, S. Krishnia, J. H. Mentink, and M. Kl¨aui, “Gesture recognition with brownian reservoir computing using geometrically confined skyrmion dynamics,” Nature Communications, vol. 15, no. 1, Sep. 2024. [Online]. Available: http: //dx.doi.org/10.1038/s41467-024-52345-y
  • L. Zhao, Z. Yu, and J. Cai, “A novel method for semg-based hand gesture recognition,” pp. 1668 – 1672, Apr. 2023. [Online]. Available: http://dx.doi.org/10.1109/ICSP58490. 2023.10248486
  • S. Mesdaghi, R. P. Hasanzadeh, and F. Janabi- Sharifi, “Finger-hand rehabilitation using dnn-based gesture recognition of low-cost webcam images,” pp. 1 – 6, Mar. 2024. [Online]. Available: http: //dx.doi.org/10.1109/MVIP62238.2024.10491167
  • R. Kushwaha, G. Kaur, and M. Kumar, “Hand gesture based sign language recognition using deep learning,” pp. 293 – 297, May 2023. [Online]. Available: http: //dx.doi.org/10.1109/ICSCCC58608.2023.10176912
  • F. Roumiassa, S. E. Agab, and F. Z. Chelali, “Hand gesture recognition system based on textural features,” pp. 1 – 6, Oct. 2022. [Online]. Available: http://dx.doi.org/10.1109/ ICAEE53772.2022.9962080
  • B. Sharma and J. Panda, “Hand gesture recognition using emd and vmd techniques,” pp. 1 – 5, Dec. 2022. [Online]. Available: http://dx.doi.org/10.1109/IATMSI56455. 2022.10119304
  • O. Ikne, B. Allaert, and H. Wannous, “Skeleton-based selfsupervised feature extraction for improved dynamic hand gesture recognition,” pp. 1 – 10, May 2024. [Online]. Available: http://dx.doi.org/10.1109/FG59268.2024.10581975
  • A. Al-Zebari, N. Omar, and A. Sengur, “Vision transformers-based hand gesture classification,” pp. 1 – 3, Dec. 2022. [Online]. Available: http: //dx.doi.org/10.1109/IISEC56263.2022.9998295
  • F. Noble, M. Xu, and F. Alam, “Static hand gesture recognition using capacitive sensing and machine learning,” Sensors, vol. 23, no. 7, p. 3419, Mar. 2023. [Online]. Available: http://dx.doi.org/10.3390/s23073419
  • L. I. Khalaf, S. A. Aswad, S. R. Ahmed, B. Makki, and M. R. Ahmed, “Survey on recognition hand gesture by using data mining algorithms,” pp. 1 – 4, Jun. 2022. [Online]. Available: http://dx.doi.org/10.1109/HORA55278. 2022.9800090
  • D. G. Leon, J. Groli, S. R. Yeduri, D. Rossier, R. Mosqueron, O. J. Pandey, and L. R. Cenkeramaddi, “Video hand gestures recognition using depth camera and lightweight cnn,” IEEE Sensors Journal, vol. 22, no. 14, pp. 14 610 – 14 619, Jul. 2022. [Online]. Available: http: //dx.doi.org/10.1109/JSEN.2022.3181518
  • H. Quinti´an, E. Corchado, A. T. Lora, H. P. Garcia, E. J. Perez, J. L. C. Rolle, F. J. M. de Pison, P. G. Bringas, F. M. Alvarez, A. Herrero, and P. Fosci, Eds., Hybrid Artificial Intelligent Systems: 19th International Conference, HAIS 2024, Salamanca, Spain, October 9–11, 2024, Proceedings, Part I, ser. Lecture Notes in Computer Science. Springer Nature Switzerland, 2024.
Index Terms
Computer Science
Information Sciences
Human-Computer Interaction
Machine Learning
Keywords

Hand Gesture Recognition Deep Learning LSTM Multimodal Fusion Lightweight Architectures

Powered by PhDFocusTM