|
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
|
| Volume 186 - Issue 78 |
| Published: April 2025 |
| Authors: Aminou Halidou, Youssoufa Mohamadou, Pascalin Tiam Apen, Daramy Vandi Von Kallon, William John Baraza, Mbouna Gildas Patrick, Djiembou Tientcheu Victor Nico, Robndoh Mardochée |
10.5120/ijca2025924642
|
Aminou Halidou, Youssoufa Mohamadou, Pascalin Tiam Apen, Daramy Vandi Von Kallon, William John Baraza, Mbouna Gildas Patrick, Djiembou Tientcheu Victor Nico, Robndoh Mardochée . Convolutional Neural Network-Based Xception, MobileNetV2 and InceptionV3 Models for Plant Disease Identification in Sub-Saharan Africa. International Journal of Computer Applications. 186, 78 (April 2025), 1-15. DOI=10.5120/ijca2025924642
@article{ 10.5120/ijca2025924642,
author = { Aminou Halidou,Youssoufa Mohamadou,Pascalin Tiam Apen,Daramy Vandi Von Kallon,William John Baraza,Mbouna Gildas Patrick,Djiembou Tientcheu Victor Nico,Robndoh Mardochée },
title = { Convolutional Neural Network-Based Xception, MobileNetV2 and InceptionV3 Models for Plant Disease Identification in Sub-Saharan Africa },
journal = { International Journal of Computer Applications },
year = { 2025 },
volume = { 186 },
number = { 78 },
pages = { 1-15 },
doi = { 10.5120/ijca2025924642 },
publisher = { Foundation of Computer Science (FCS), NY, USA }
}
%0 Journal Article
%D 2025
%A Aminou Halidou
%A Youssoufa Mohamadou
%A Pascalin Tiam Apen
%A Daramy Vandi Von Kallon
%A William John Baraza
%A Mbouna Gildas Patrick
%A Djiembou Tientcheu Victor Nico
%A Robndoh Mardochée
%T Convolutional Neural Network-Based Xception, MobileNetV2 and InceptionV3 Models for Plant Disease Identification in Sub-Saharan Africa%T
%J International Journal of Computer Applications
%V 186
%N 78
%P 1-15
%R 10.5120/ijca2025924642
%I Foundation of Computer Science (FCS), NY, USA
Plant disease identification in Sub-Saharan Africa poses a significant challenge, hindered by costly laboratory tests or subjective visual assessments. Recent advances in image-based disease identification show promise, but existing methods are limited in accuracy and efficiency. This study addresses these shortcomings by presenting a convolutional neural network (CNN)-based plant disease classifier, leveraging transfer learning from pre-trained models Xception, MobileNetV2, and InceptionV3. A high generalization rate of 98.76% is achieved in the test data, demonstrating the potential for efficient and accurate identification of plant disease. This research contributes to innovative agricultural management solutions in Sub-Saharan Africa, with implications for improving crop yields, food security, and sustainable agriculture.