International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
|
Volume 186 - Issue 78 |
Published: April 2025 |
Authors: Aminou Halidou, Youssoufa Mohamadou, Pascalin Tiam Apen, Daramy Vandi Von Kallon, William John Baraza, Mbouna Gildas Patrick, Djiembou Tientcheu Victor Nico, Robndoh Mardochée |
![]() |
Aminou Halidou, Youssoufa Mohamadou, Pascalin Tiam Apen, Daramy Vandi Von Kallon, William John Baraza, Mbouna Gildas Patrick, Djiembou Tientcheu Victor Nico, Robndoh Mardochée . Convolutional Neural Network-Based Xception, MobileNetV2 and InceptionV3 Models for Plant Disease Identification in Sub-Saharan Africa. International Journal of Computer Applications. 186, 78 (April 2025), 1-15. DOI=10.5120/ijca2025924642
@article{ 10.5120/ijca2025924642, author = { Aminou Halidou,Youssoufa Mohamadou,Pascalin Tiam Apen,Daramy Vandi Von Kallon,William John Baraza,Mbouna Gildas Patrick,Djiembou Tientcheu Victor Nico,Robndoh Mardochée }, title = { Convolutional Neural Network-Based Xception, MobileNetV2 and InceptionV3 Models for Plant Disease Identification in Sub-Saharan Africa }, journal = { International Journal of Computer Applications }, year = { 2025 }, volume = { 186 }, number = { 78 }, pages = { 1-15 }, doi = { 10.5120/ijca2025924642 }, publisher = { Foundation of Computer Science (FCS), NY, USA } }
%0 Journal Article %D 2025 %A Aminou Halidou %A Youssoufa Mohamadou %A Pascalin Tiam Apen %A Daramy Vandi Von Kallon %A William John Baraza %A Mbouna Gildas Patrick %A Djiembou Tientcheu Victor Nico %A Robndoh Mardochée %T Convolutional Neural Network-Based Xception, MobileNetV2 and InceptionV3 Models for Plant Disease Identification in Sub-Saharan Africa%T %J International Journal of Computer Applications %V 186 %N 78 %P 1-15 %R 10.5120/ijca2025924642 %I Foundation of Computer Science (FCS), NY, USA
Plant disease identification in Sub-Saharan Africa poses a significant challenge, hindered by costly laboratory tests or subjective visual assessments. Recent advances in image-based disease identification show promise, but existing methods are limited in accuracy and efficiency. This study addresses these shortcomings by presenting a convolutional neural network (CNN)-based plant disease classifier, leveraging transfer learning from pre-trained models Xception, MobileNetV2, and InceptionV3. A high generalization rate of 98.76% is achieved in the test data, demonstrating the potential for efficient and accurate identification of plant disease. This research contributes to innovative agricultural management solutions in Sub-Saharan Africa, with implications for improving crop yields, food security, and sustainable agriculture.