Research Article

Computational Mathematics: Solving Complex Problems with the Latest Techniques

by  Romal Bharatkumar Patel
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 184 - Issue 46
Published: Feb 2023
Authors: Romal Bharatkumar Patel
10.5120/ijca2023922574
PDF

Romal Bharatkumar Patel . Computational Mathematics: Solving Complex Problems with the Latest Techniques. International Journal of Computer Applications. 184, 46 (Feb 2023), 37-43. DOI=10.5120/ijca2023922574

                        @article{ 10.5120/ijca2023922574,
                        author  = { Romal Bharatkumar Patel },
                        title   = { Computational Mathematics: Solving Complex Problems with the Latest Techniques },
                        journal = { International Journal of Computer Applications },
                        year    = { 2023 },
                        volume  = { 184 },
                        number  = { 46 },
                        pages   = { 37-43 },
                        doi     = { 10.5120/ijca2023922574 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2023
                        %A Romal Bharatkumar Patel
                        %T Computational Mathematics: Solving Complex Problems with the Latest Techniques%T 
                        %J International Journal of Computer Applications
                        %V 184
                        %N 46
                        %P 37-43
                        %R 10.5120/ijca2023922574
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Computational mathematics is a field that involves the use of mathematical techniques and algorithms to solve problems in science, engineering, and other fields. This includes a wide range of topics, such as numerical analysis, scientific computing, optimization, and machine learning. Numerical methods and algorithms play a crucial role in computational mathematics, as they allow for the approximate solution of complex problems that may not have an exact solution. Mathematical models are also an important tool in computational mathematics, as they provide a framework for understanding and predicting real-world phenomena. Machine learning and data analysis techniques are increasingly being used in computational mathematics to analyze large datasets and extract insights. High-performance computing and cloud computing are also key areas within computational mathematics, as they enable the processing of large amounts of data and the running of complex simulations. Finally, emerging technologies such as deep learning and quantum computing hold great potential for advancing the field of computational mathematics in the future.

References
  • Burden, R. L., & Faires, J. D. (2011). Numerical analysis (9th ed.). Boston, MA: Brooks/Cole. https://www.amazon.com/Numerical-Analysis-9th-Book-Only/dp/B0059JHM6M
  • Heath, M. T. (2002). Scientific computing: An introductory survey (2nd ed.). New York, NY: McGraw-Hill. https://www.amazon.com/Scientific-Computing-Introductory-Survey-Revised/dp/1611975573/ref=sr_1_1?crid=38XGH4JUFP4PQ&keywords=Scientific+computing&qid=1673244999&s=b ooks&sprefix=scientific+computing%2Cstripbooks-intl-ship%2C711&sr=1-1
  • Luenberger, D. G. (2008). Optimization by vector space methods (2nd ed.). New York, NY: Wiley. https://www.amazon.com/Optimization-Vector-Space-Methods-Luenberger/dp/047118117X/ref=sr_1_1?crid=DKD35559EP13&keywords=Optimization+by+vector+space+methods+%282nd+ed.%29&qid=1673245203&s=books&sprefix=optimization+by+vector+space+methods+2nd+ed.+%2Cstripb ooks-intl-ship %2C652&sr=1-1
  • Bishop, C. M. (2006). Pattern recognition and machine learning (1st ed.). New York, NY: Springer. https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738 Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.). New York, NY: Springer. https://www.amazon.com/Numerical-Optimization-Second-Springer-Science/dp/0387303030
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge, UK: Cambridge University Press. https://www.amazon.com/Numerical-Recipes-Art-Scientific-Computing/dp/0521880688
  • Francis B. Hildebrand. Introduction to Numerical Analysis: Dover Publications; Second edition (April 26, 2013), (Dover Books on Mathematics) Second Edition, Kindle Edition https://www.amazon.com/Introduction-Numerical-Analysis-Second-Mathematics/dp/0486653633
  • Lloyd N. Trefethen (Author). Spectral Methods in MATLAB (Software, Environments, Tools) 62026th Edition. Philadelphia, PA: Society for Industrial and Applied Mathematics. https://www.amazon.com/Spectral-Methods-MATLAB-Software-Environments/dp/0898714656
  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge University Press. https://www.amazon.com/Convex-Optimization-Corrections-2008-Stephen/dp/0521833787/ref=sr_1_1?crid=31O908LGFDRGR&keywords=Convex+optimization&qid=1673248411&s= books&sprefix=convex+optimization%2Cstripbooks-intl-ship%2C890&sr=1-1
  • Katta G. Murty (September 1983). Linear programming. NY: John Wiley & Sons. https://www.wiley.com/en-sg/Linear+Programming-p-9780471097259
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge, UK: Cambridge University Press. https://www.amazon.com/Numerical-Recipes-Scientific-Computing-Press/dp/0521880688
  • Gander, W., & Gautschi, W. (2000). Numerical analysis: An introduction (2nd ed.). New York, NY: Birkhäuser. https://www.amazon.com/Numerical-Analysis-Introduction-Walter-Gautschi/dp/3764338954
  • Trefethen, L. N. (2000). Spectral methods in MATLAB (1st ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics. https://www.amazon.com/Spectral-Methods-MATLAB-Lloyd-Trefethen/dp/0898714754
  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge University Press. https://www.amazon.com/Convex-Optimization-Stephen-Boyd/dp/0521833787
  • Murty, M. N. (1997). Linear programming. New York, NY: John Wiley & Sons. https://www.amazon.com/Linear-Programming-John-Wiley-Series-Operations/dp/0471144269
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge, UK: Cambridge University Press. https://www.amazon.com/Numerical-Recipes-Scientific-Computing-Press/dp/0521880688
  • Gander, W., & Gautschi, W. (2000). Numerical analysis: An introduction (2nd ed.). New York, NY: Birkhäuser. https://www.amazon.com/Numerical-Analysis-Introduction-Walter-Gautschi/dp/3764338954
  • Burden, R. L., & Faires, J. D. (2011). Numerical analysis (9th ed.). Boston, MA: Brooks/Cole. https://www.amazon.com/Numerical-Analysis-Richard-L-Burden/dp/0534382169
  • Heath, M. T. (2002). Scientific computing: An introductory survey (2nd ed.). New York, NY: McGraw-Hill. https://www.amazon.com/Scientific-Computing-Michael-T-Heath/dp/0072399104
  • Luenberger, D. G. (2008). Optimization by vector space methods (2nd ed.). New York, NY: Wiley. https://www.amazon.com/Optimization-Vector-Space-Methods-Luenberger/dp/047118117X
  • Bishop, C. M. (2006). Pattern recognition and machine learning (1st ed.). New York, NY: Springer. https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738
  • Nocedal, J.,& Wright, S. J. (2006). Numerical optimization (2nd ed.). New York, NY: Springer. https://www.amazon.com/Numerical-Optimization-Springer-Science-Business/dp/0387303030
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge, UK: Cambridge University Press. https://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/0521880688
  • Gander, W., & Gautschi, W. (2000). Numerical analysis: An introduction (2nd ed.). New York, NY: Birkhäuser. https://www.amazon.com/Numerical-Analysis-Introduction-Walter-Gautschi/dp/3764338954
  • Trefethen, L. N. (2000). Spectral methods in MATLAB (1st ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics. https://www.amazon.com/Spectral-Software-Environments-Trefethen-2000-07-01/dp/B01K0S23SI
  • Stephen Boyd, Lieven Vandenberghe (2004). Convex Optimization 1st Edition, Kindle Edition. New York, NY: Cambridge University Press; 1st edition (March 8, 2004) https://www.amazon.com/Convex-Optimization-Stephen-Boyd-ebook/dp/B00E3UR2KE
  • Anish K Sah, (April 16, 2022). Gradient Descent: A Bank Loan Story. Kindle Edition. https://www.amazon.com/Gradient-Descent-Bank-Loan-Story-ebook/dp/B09Y4L87FV/ref=sr_1_1?crid=33FVBG1UVL65T&keywords=Gradient+descent&qid=1673251031&s=digital - text&sprefix=gradient+descent%2Cdigital-text%2C694&sr=1-1
  • Back propagation. https://en.wikipedia.org/wiki/Backpropagation
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. https://arxiv.org/abs/1412.6980
  • Support vector machine. https://en.wikipedia.org/wiki/Support_vector_machine
  • Cloud computing. https://en.wikipedia.org/wiki/Cloud_computing
  • Data mining. https://en.wikipedia.org/wiki/Data_mining
  • Robotics.https://en.wikipedia.org/wiki/Robotics
  • Internet of things. https://en.wikipedia.org/wiki/Internet_of_things
  • Cybersecurity.https://en.wikipedia.org/wiki/CybersecurityTuring, A. M. (1950). Computing machinery and intelligence.https://redirect.cs.umbc.edu/courses/471/papers/turing.pdf
  • Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages, and computation. Reading, MA: Addison-Wesley. https://www-2.dc.uba.ar/staff/becher/Hopcroft-Motwani-Ullman-2001.pdf
  • Donald Knuth. (1997). The art of computer programming, vol. 1: Fundamental algorithms (3rd ed.). Reading, MA: Addison-Wesley. https://en.wikipedia.org/w/index.php?go=Go&search=Knuth%2C+D.+E.+%281997%29.+The+art+of+computer+progr amming%2C+vol.+1%3A+Fundamental+algorithms+%283rd+ed.%29.+Reading%2C+MA%3A+Addison-Wesley.&title=Special:Search&ns0=1
  • Sedgewick, R. (2011). Algorithms (4th ed.). Upper Saddle River, NJ: Pearson Education. https://www.amazon.com/Algorithms-4th-Robert-Sedgewick/dp/032157351X
  • Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.). Cambridge, MA: MIT Press.https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844
  • Watson, J. (1953). The double helix: A personal account of the discovery of the structure of DNA. New York, NY: Signet. https://www.amazon.com/Double-Helix-Personal-Discovery-Structure/dp/074321630X
  • A mathematical theory of communication. https://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication#:~:text=%22A%20Mathematical%20Theory %20of %20Communication,the%20generality%20of%20this%20work.
  • Algorithm 97: Shortest path https://dl.acm.org/doi/10.1145/367766.368168
  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. https://link.springer.com/article/10.1007/BF01386390
  • Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48-50. https://scirp.org/reference/referencespapers.aspx?referenceid=1449476
  • Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Technical Journal, 36(6), 1389-1401. https://ieeexplore.ieee.org/document/6773228
  • Johnson, D. S. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 24(1), 1-13. https://dl.acm.org/doi/abs/10.1145/321992.321993
  • Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260-269. https://ieeexplore.ieee.org/document/1054010
  • Gallager, R. G. (1963). Low-density parity-check codes. https://web.stanford.edu/class/ee388/papers/ldpc.pdf
  • Ashikhmin, A., & Knill, E. (2000). Nonbinary quantum stabilizer codes. IEEE Transactions on Information Theory, 47(7), 3065-3072 https://ieeexplore.ieee.org/document/959288
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Big data Artificial intelligence Deep learning Cloud computing High-performance computing Data Science Natural language processing Computer vision Blockchain Quantum computing Data mining Robotics Internet of Things (IoT) Cyber security

Powered by PhDFocusTM