Research Article

Hop Hubtic Number and Hop Hub Polynomial of Graphs

by  Abdu-Alkafi Saead Sand, Sultan Senan Mahde
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 183 - Issue 52
Published: Feb 2022
Authors: Abdu-Alkafi Saead Sand, Sultan Senan Mahde
10.5120/ijca2022921938
PDF

Abdu-Alkafi Saead Sand, Sultan Senan Mahde . Hop Hubtic Number and Hop Hub Polynomial of Graphs. International Journal of Computer Applications. 183, 52 (Feb 2022), 1-5. DOI=10.5120/ijca2022921938

                        @article{ 10.5120/ijca2022921938,
                        author  = { Abdu-Alkafi Saead Sand,Sultan Senan Mahde },
                        title   = { Hop Hubtic Number and Hop Hub Polynomial of Graphs },
                        journal = { International Journal of Computer Applications },
                        year    = { 2022 },
                        volume  = { 183 },
                        number  = { 52 },
                        pages   = { 1-5 },
                        doi     = { 10.5120/ijca2022921938 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2022
                        %A Abdu-Alkafi Saead Sand
                        %A Sultan Senan Mahde
                        %T Hop Hubtic Number and Hop Hub Polynomial of Graphs%T 
                        %J International Journal of Computer Applications
                        %V 183
                        %N 52
                        %P 1-5
                        %R 10.5120/ijca2022921938
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The maximum order of partition of the vertex set V (G) into vertex hop hub sets is called hop hubtic number of G and denoted by h?(G). In this paper the hop hubtic number of some standard graphs was determined. Also bounds for h?(G) were obtained. The hop hub polynomial of a connected graph G was introduced. The hop hub polynomial of a connected graph G of order n is the polynomial Hh(G, x) = |VX(G)| i=hh(G) hh(G, i)xi, where hh(G, i) denotes the number of hop hub sets of G of cardinality i and hh(G) is the hop hub number of G. Finally, the hop hub polynomial of some special classes of graphs was studied.

References
  • S. Akbari, S. Alikhani and Y. H. Peng, Characterization of graphs using domination polynomial, European J., 31 (2010), 1714-1724.
  • G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc., 60 (1946), 355-451.
  • E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247261.
  • E. J. Farrell, A note on the clique polynomial and its relation to other graph polynomials, J. Math. Sci., (Calcutta) 8 (1997), 97-102.
  • F. Harary, Graph theory, Narosa Publishing House, New Delhi, 2001.
  • T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dckker, New York, 1998.
  • S. I. Khalaf, V. Mathad and S. S. Mahde, Hubtic number in graphs, Opuscula Math., 38 (6) (2018), 841–847.
  • S. S. Mahde and V. Mathad, Hub-integrity polynomial of graphs, TWMS J. App. Eng. Math., 10(2) (2020), 434-442.
  • S. S. Mahde and A. S. Sand, Hop hub-integrity of graphs, Int. J. Math. And Appl., 9(4)(2021), 91-100.
  • A. Mowshowitz, The characteristic polynomial of a graph, J. Combin. Theory Ser., B 12 (1972), 177-193.
  • A. S. Sand, S. S. Mahde, Hop hub number in graphs , submitted.
  • W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math., 6 (1954), 80-91.
  • R. P. Veettil and T. V. Ramakrishnan, Introduction to hub polynomial of graphs, Malaya Journal of Matematik., 8(4) (2020) 1592-1596.
  • M. Walsh, The hub number of graphs, Int. J. Math. Comput. Sci., 1 (2006), 117-124.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Hubtic number Hop Hubtic number Hop Hub number Hub polynomial

Powered by PhDFocusTM