Research Article

HPDDRR: Optimized Scheduler Shaper for Bandwidth Management and Traffic Shaping in Internet Protocol Storage Area Networks

by  Kithinji Joseph, Makau S. Mutua, Gitonga D. Mwathi
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 183 - Issue 36
Published: Nov 2021
Authors: Kithinji Joseph, Makau S. Mutua, Gitonga D. Mwathi
10.5120/ijca2021921746
PDF

Kithinji Joseph, Makau S. Mutua, Gitonga D. Mwathi . HPDDRR: Optimized Scheduler Shaper for Bandwidth Management and Traffic Shaping in Internet Protocol Storage Area Networks. International Journal of Computer Applications. 183, 36 (Nov 2021), 20-32. DOI=10.5120/ijca2021921746

                        @article{ 10.5120/ijca2021921746,
                        author  = { Kithinji Joseph,Makau S. Mutua,Gitonga D. Mwathi },
                        title   = { HPDDRR: Optimized Scheduler Shaper for Bandwidth Management and Traffic Shaping in Internet Protocol Storage Area Networks },
                        journal = { International Journal of Computer Applications },
                        year    = { 2021 },
                        volume  = { 183 },
                        number  = { 36 },
                        pages   = { 20-32 },
                        doi     = { 10.5120/ijca2021921746 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2021
                        %A Kithinji Joseph
                        %A Makau S. Mutua
                        %A Gitonga D. Mwathi
                        %T HPDDRR: Optimized Scheduler Shaper for Bandwidth Management and Traffic Shaping in Internet Protocol Storage Area Networks%T 
                        %J International Journal of Computer Applications
                        %V 183
                        %N 36
                        %P 20-32
                        %R 10.5120/ijca2021921746
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Providing QOS (quality of service) is a vital problem in storage area networks. In this paper a technique known as HPDDRR(hierarchical priority based dynamic deficit round robin) which is scheduler shaper that uses hit ration for flow prioritization and a dynamic quantum calculated based on the priority for scheduling is presented. Based on the applications used, packets may vary in sizes and belonging to different priority classes. To ensure that big low priority packets don’t delay small high priority packets this study uses hierarchical priority queues instead of FIFO (first in first out) queues for scheduling. This allows for performance isolation as well as resource sharing. The evaluation results proof that HPDDRR is able to optimize bandwidth utilization as well as latency for competing traffic flows under Service level objectives constraints.

References
  • M. Karlsson, C. Karamanolis, and X. Zhu, ‚ÄúTriage: Performance Differentiation for Storage Systems Using Adaptive Control,‚Äù ACM Trans. Storage, vol. 1, no. 4, pp. 457‚Äì480, 2005.
  • X. Xuedong, ‚ÄúResearch and Implementation of iSCSI-based SAN Static Data Encryption System,‚Äù pp. 257‚Äì260, 2012.
  • M. A. L. I. Imran, ‚ÄúIncast Mitigation in a Data Center Storage Cluster Through a Dynamic Fair-Share Buffer Policy,‚Äù IEEE Access, vol. 7, pp. 10718‚Äì10733, 2019.
  • M. B. P. Martins and W. L. Zucch, ‚ÄúFCo oE an d iSC SI Per rforma ance Analys sis in T Tape irtualiz zation n Syste ems,‚Äù vol. 13, no. 7, pp. 2372‚Äì2378, 2015.
  • Y. Cui et al., ‚ÄúTailCutter: Wisely cutting tail latency in cloud CDNs under cost constraints,‚Äù IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1612‚Äì1628, 2019.
  • V. Jaiman, S. Ben Mokhtar, V. Qu√©ma, L. Y. Chen, and E. Rivi√®re, ‚ÄúH√©ron: Taming tail latencies in key-value stores under heterogeneous workloads,‚Äù Proc. IEEE Symp. Reliab. Distrib. Syst., vol. 2019-Octob, pp. 191‚Äì200, 2019.
  • Y. Peng and P. Varman, ‚ÄúBQueue: A coarse-grained bucket QoS scheduler,‚Äù Proc. - 18th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput. CCGRID 2018, pp. 93‚Äì102, 2018.
  • Y. Lu, D. H. C. Du, and T. Ruwart, ‚ÄúQoS provisioning framework for an OSD-based storage system,‚Äù Proc. - Twenty -second IEEE/Thirteenth NASA Goddard Conf. Mass Storage Syst. Technol., pp. 28‚Äì35, 2005.
  • S. Sarmah and S. K. Sarma, ‚ÄúA Novel Approach to Prioritized Bandwidth Management in 802.11e WLAN,‚Äù 2019 IEEE 5th Int. Conf. Converg. Technol. I2CT 2019, pp. 1‚Äì5, 2019.
  • J. L. Valenzuela, A. Monleon, I. San Esteban, M. Portoles, and O. Salient, ‚ÄúA hierarchical token bucket algorithm to enhance QoS in IEEE 802.11:Proposal, implementation and evaluation,‚Äù IEEE Veh. Technol. Conf., vol. 60, no. 4, pp. 2659‚Äì2662, 2004.
  • D. Iswadi, R. Adriman, and R. Munadi, ‚ÄúAdaptive Switching PCQ-HTB Algorithms for Bandwidth Management in RouterOS,‚Äù Proc. Cybern. 2019 - 2019 IEEE Int. Conf. Cybern. Comput. Intell. Towar. a Smart Human-Centered Cyber World, pp. 61‚Äì65, 2019.
  • Garroppo, Rosario Giuseppe, et al. "The wireless hierarchical token bucket: a channel aware scheduler for 802.11 networks."¬†Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks. IEEE, 2005.
  • Y. Wang, F. Xu, Z. Chen, Y. Sun, and H. Zhang, ‚ÄúAn Application-Level QoS Control Method Based on Local Bandwidth Scheduling,‚Äù vol. 2018, pp. 1‚Äì10, 2018.
  • Z. Zhou, Y. Yan, M. Berger, and S. Ruepp, ‚ÄúAnalysis and Modeling of Asynchronous TrafficShaping in Time Sensitive Networks,‚Äù 2018 14th IEEE Int. Work. Fact. Commun. Syst., pp. 1‚Äì4, 2018.
  • C. H. Lee and Y. T. Kim, ‚ÄúQoS-aware hierarchical token bucket (QHTB) queuing disciplines for QoS-guaranteed Diffserv provisioning with optimized bandwidth utilization and priority-based preemption,‚Äù Int. Conf. Inf. Netw., pp. 351‚Äì358, 2013.
  • W. M. Zuberek and D. Strzeciwilk, ‚ÄúModeling Traffic Shaping and Traffic Policing in Packet-Switched Networks,‚Äù vol. 6, no. 2, pp. 75‚Äì81, 2018.
  • A. Elgabli, A. Elghariani, V. Aggarwal, and M. Bell, ‚ÄúQoE-Aware Resource Allocation for Small Cells,‚Äù 2018 IEEE Glob. Commun. Conf., pp. 1‚Äì6, 2018.
  • B. Wu, B. Wu, H. Yin, A. Liu, C. Liu, and F. Xing, ‚ÄúInvestigation and System Implementation of Flexible Bandwidth Switching for a Software-Defined Space Information Network,‚Äù IEEE Photonics J., vol. 9, no. 3, pp. 1‚Äì14, 2017.
  • M. Song, ‚ÄúMinimizing Power Consumption in Video Servers by the Combined Use of Solid-State Disks and Multi-Speed Disks,‚Äù IEEE Access, vol. 6, pp. 25737‚Äì25746, 2018.
  • H. Guo, ‚ÄúA Dynamic and Adaptive Bandwidth Management Scheme for QoS Support in Wireless Multimedia Networks,‚Äù vol. 00, no. c, 2005.
  • P. Ramaswamy, ‚ÄúPROVISIONING TASK BASED SYMMETRIC QoS IN iSCSI SAN,‚Äù no. December, 2008.
  • F. Uff, ‚ÄúA Lightweight Reinforcement-Learning-Based Multitenant Data Center,‚Äù pp. 331‚Äì336, 2020.
  • D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, and T. P. L. √ù, ‚ÄúPerformance virtualization for large-scale storage systems,‚Äù 2003.
  • Y. Peng and P. Varman, ‚ÄúPTrans: A Scalable Algorithm for Reservation Guarantees in Distributed Systems,‚Äù Annu. ACM Symp. Parallelism Algorithms Archit., pp. 441‚Äì452, 2020.
  • Y. Peng, Q. Liu, and P. Varman, ‚ÄúScalable QoS for Distributed Storage Clusters using Dynamic Token Allocation,‚Äù IEEE Symp. Mass Storage Syst. Technol., vol. 2019-May, pp. 14‚Äì27, 2019.
  • E. Micha and N. Shah, ‚ÄúProportionally fair clustering revisited,‚Äù Leibniz Int. Proc. Informatics, LIPIcs, vol. 168, 2020.
  • B. Siregar, A. Fadli, and A. Hizriadi, ‚ÄúControlling of Quality of Service in Campus Area Network Using OpenDaylight with Hierarchical Token Bucket Method,‚Äù 7th Int. Conf. ICT Smart Soc. AIoT Smart Soc. ICISS 2020 - Proceeding, pp. 8‚Äì12, 2020.
  • D. Iswadi, R. Adriman, and R. Munadi, ‚ÄúAdaptive Switching PCQ-HTB Algorithms for Bandwidth Management in RouterOS,‚Äù Proc. Cybern. 2019 - 2019 IEEE Int. Conf. Cybern. Comput. Intell. Towar. a Smart Human-Centered Cyber World, pp. 61‚Äì65, 2019.
  • K. Mathews, C. Kramer, and R. Gotzhein, ‚ÄúToken bucket based traffic shaping and monitoring for WLAN-based control systems,‚Äù IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, vol. 2017-Octob, pp. 1‚Äì7, 2018.
  • D. Iswadi, ‚ÄúAdaptive Switching PCQ-HTB Algorithms for Bandwidth Management in RouterOS,‚Äù pp. 61‚Äì65, 2019.
  • Y. Qian et al., ‚ÄúA configurable rule based classful token bucket filter network request scheduler for the lustre file system,‚Äù Proc. Int. Conf. High Perform. Comput. Networking, Storage Anal. SC 2017, 2017.
  • Sarmah, Satyajit, and Shikhar Kumar Sarma. "A novel approach to prioritized bandwidth management in 802.11 e WLAN."¬†2019 IEEE 5th International Conference for Convergence in Technology (I2CT). IEEE, 2019.
  • S. Ren, Q. Feng, and W. Dou, ‚ÄúAn end-to-end qos routing on software defined network based on hierarchical token bucket queuing discipline,‚Äù ACM Int. Conf. Proceeding Ser., vol. Part F1287, pp. 0‚Äì4, 2017.
  • B. Siregar, A. Fadli, and A. Hizriadi, ‚ÄúControlling of Quality of Service in Campus Area Network Using OpenDaylight with Hierarchical Token Bucket Method,‚Äù 7th Int. Conf. ICT Smart Soc. AIoT Smart Soc. ICISS 2020 - Proceeding, pp. 1‚Äì5, 2020.
  • W. Aljoby, X. Wang, T. Z. J. Fu, and R. T. B. Ma, ‚ÄúOn SDN-enabled online and dynamic bandwidth allocation for stream analytics,‚Äù arXiv, vol. 37, no. 8, pp. 1688‚Äì1702, 2018.
  • Valenzuela, Jose Luis, et al. "A hierarchical token bucket algorithm to enhance QoS in IEEE 802.11: proposal, implementation and evaluation."¬†IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004. Vol. 4. IEEE, 2004.
  • S. Ren, ‚ÄúA Service Curve of Hierarchical Token Bucket Queue Discipline on Soft-Ware Defined Networks Based on Deterministic Network Calculus: An Analysis and Simulation,‚Äù J. Adv. Comput. Networks, vol. 5, no. 1, pp. 8‚Äì12, 2017.
  • A. N. Sanyoto, D. Perdana, and G. Bisono, ‚ÄúPerformance Evaluation of Round Robin and Proportional Fair Scheduling Algorithm on 5G Milimeter Wave Network for Node Density Scenarios,‚Äù Int. J. Simul. Syst. Sci. Technol., pp. 1‚Äì6, 2019.
  • A. B. Mathews and G. Glandevadhas, ‚ÄúImproved Proportional Fair Algorithm for Transportation of 5G Signals in Internet of Medical Things,‚Äù Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 2, pp. 1810‚Äì1814, 2020.
  • M. Saunders, P. Lewis, and A. Thornhill, Research for business students fifth edition,Pearson Education,2009. .
  • Greener S. Business Research Methods.[e-book] Dr. Sue Greener and Ventus Publishing ApS. Available through:< http://www. bookbon. com>[Accessed 9 May 2011]. 2008.
  • Winterton J. Business Research Methods ALAN BRYMAN and EMMA BELL. Oxford: Oxford University Press, 2007. xxxii+ 786 pp.¬£ 34.99 (pbk). ISBN 9780199284986. Management Learning. 2008 Nov;39(5):628-32.
  • I. Guo, N. Langren√©, G. Loeper, and W. Ning, ‚ÄúRobust utility maximization under model uncertainty via a penalization approach,‚Äù Math. Financ. Econ., no. 2013, pp. 1‚Äì33, 2021.
  • L. Vigneri, G. Paschos, and P. Mertikopoulos, ‚ÄúLarge-Scale Network Utility Maximization: Countering Exponential Growth with Exponentiated Gradients,‚Äù Proc. - IEEE INFOCOM, vol. 2019-April, pp. 1630‚Äì1638, 2019.
  • Y. Wang, W. Wang, Y. Cui, K. G. Shin, and Z. Zhang, ‚ÄúDistributed Packet Forwarding and Caching Based on Stochastic Network Utility Maximization,‚Äù IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1264‚Äì1277, 2018.
  • F. Zhang, R. Deng, and H. Liang, ‚ÄúAn Optimal Real-Time Distributed Algorithm for Utility Maximization of Mobile Ad Hoc Cloud,‚Äù IEEE Commun. Lett., vol. 22, no. 4, pp. 824‚Äì827, 2018.
  • L. Gu et al., ‚ÄúFairness-Aware Dynamic Rate Control and Flow Scheduling for Network Utility Maximization in Network Service Chain,‚Äù IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 1059‚Äì1071, 2019.
  • L. Leonardi, L. Lo Bello, and S. Aglian√≤, ‚ÄúPriority-based bandwidth management in virtualized software-defined networks,‚Äù Electron., vol. 9, no. 6, pp. 1‚Äì21, 2020.
  • A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman, ‚ÄúDemand based hierarchical QoS using storage resource pools,‚Äù Proc. 2012 USENIX Annu. Tech. Conf. USENIX ATC 2012, pp. 1‚Äì13, 2019.
  • J, Lee E, Noh SH. I/O Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments. IEEE Access. 2019 Dec 30;8:4451-65.
  • Wachs, Matthew, Michael Abd-El-Malek, Eno Thereska, and Gregory R. Ganger. "Argon: Performance Insulation for Shared Storage Servers." In¬†FAST, vol. 7, pp. 5-5. 2007.
  • Wu, Joel C., and Scott A. Brandt. "The design and implementation of AQuA: an adaptive quality of service aware object-based storage device." In¬†Proceedings of the 23rd IEEE/14th NASA Goddard Conference on Mass Storage Systems and Technologies, pp. 209-218. 2006.
  • Li N, Jiang H, Feng D, Shi Z. Pslo: Enforcing the xth percentile latency and throughput slos for consolidated vm storage. InProceedings of the Eleventh European Conference on Computer Systems 2016,pp. 1-14.
  • Y. Peng, ‚ÄúLatency Fairness Scheduling for Shared Storage Systems,‚Äù 2019 IEEE Int. Conf. Networking, Archit. Storage, pp. 1‚Äì8.
  • Wong, Theodore M., Richard A. Golding, Caixue Lin, and Ralph A. Becker-Szendy. "Zygaria: Storage performance as a managed resource." In¬†12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'06), pp. 125-134. IEEE, 2006.
  • Gulati, Ajay, Irfan Ahmad, and Carl A. Waldspurger. "PARDA: Proportional Allocation of Resources for Distributed Storage Access." FAST. Vol. 9. 2009.
  • 
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Dynamic Bandwidth management Burst Handling ISCSI IP SAN Quantum Policing.

Powered by PhDFocusTM