Research Article

A Survey of Data Hiding Techniques

by  Kshitij Pathak, Sanjay Silakari, Narendra S. Chaudhari
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 182 - Issue 28
Published: Nov 2018
Authors: Kshitij Pathak, Sanjay Silakari, Narendra S. Chaudhari
10.5120/ijca2018918138
PDF

Kshitij Pathak, Sanjay Silakari, Narendra S. Chaudhari . A Survey of Data Hiding Techniques. International Journal of Computer Applications. 182, 28 (Nov 2018), 1-6. DOI=10.5120/ijca2018918138

                        @article{ 10.5120/ijca2018918138,
                        author  = { Kshitij Pathak,Sanjay Silakari,Narendra S. Chaudhari },
                        title   = { A Survey of Data Hiding Techniques },
                        journal = { International Journal of Computer Applications },
                        year    = { 2018 },
                        volume  = { 182 },
                        number  = { 28 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/ijca2018918138 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2018
                        %A Kshitij Pathak
                        %A Sanjay Silakari
                        %A Narendra S. Chaudhari
                        %T A Survey of Data Hiding Techniques%T 
                        %J International Journal of Computer Applications
                        %V 182
                        %N 28
                        %P 1-6
                        %R 10.5120/ijca2018918138
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper introduces the privacy, data privacy - Stakeholders and classifications of attributes for data hiding techniques. It also throws the light on various data hiding techniques such as randomization, k-anonymity, l-diversity, t-closeness and tokenization. Also, the importance of balancing privacy and utility is discussed.

References
  • Charu C Aggarwal. On k-anonymity and the curse of dimensionality. In Proceedings of the 31st international conference on Very large data bases, pages 901–909. VLDB Endowment, 2005.
  • Rakesh Agrawal and Ramakrishnan Srikant. Privacypreserving data mining. In ACM Sigmod Record, volume 29, pages 439–450. ACM, 2000.
  • Roberto J Bayardo and Rakesh Agrawal. Data privacy through optimal k-anonymization. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on, pages 217–228. IEEE, 2005.
  • V Ciriani, S De Capitani di Vimercati, S Foresti, and P Samarati. k-anonymity. security in decentralized data management. jajodia S., Yu T., Springer, 2006.
  • Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, and Johannes Gehrke. Privacy preserving mining of association rules. Information Systems, 29(4):343–364, 2004.
  • Luisa Franconi and Silvia Polettini. Individual risk estimation in mu-argus: A review. Lecture notes in computer science, 3050:262–272, 2004.
  • A Hundepool, A Van deWetering, R Ramaswamy, L Franconi, A Capobianchi, PP DeWolf, J Domingo-Ferrer, V Torra, R Brand, and S Giessing. μ-argus version 3.2 software and user’s manual. statistics netherlands, 2003.
  • Anco Hundepool and LCRJWillenborg. μ-and τ-argus: Software for statistical disclosure control. In Third International Seminar on Statistical Confidentiality, 1996.
  • Vijay S Iyengar. Transforming data to satisfy privacy constraints. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 279–288. ACM, 2002.
  • Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Incognito: Efficient full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 49–60. ACM, 2005.
  • Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 106–115. IEEE, 2007.
  • Chong K Liew, Uinam J Choi, and Chung J Liew. A data distortion by probability distribution. ACM Transactions on Database Systems (TODS), 10(3):395–411, 1985.
  • Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International Conference on, pages 24–24. IEEE, 2006.
  • Adam Meyerson and Ryan Williams. On the complexity of optimal k-anonymity. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 223–228. ACM, 2004.
  • Pierangela Samarati. Protecting respondents identities in microdata release. IEEE transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.
  • Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity when disclosing information. In PODS, volume 98, page 188, 1998.
  • Latanya Sweeney. Guaranteeing anonymity when sharing medical data, the datafly system. In Proceedings of the AMIA Annual Fall Symposium, page 51. American Medical Informatics Association, 1997.
  • Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.
  • Nataraj Venkataramanan and Ashwin Shriram. Data Privacy: Principles and Practice. CRC Press, 2016.
  • Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.
  • WilliamWinkler. Using simulated annealing for k-anonymity. Technical report, Research Report 2002-07, US Census Bureau Statistical Research Division, 2002.
  • Xiaokui Xiao and Yufei Tao. Anatomy: Simple and effective privacy preservation. In Proceedings of the 32nd international conference on Very large data bases, pages 139–150. VLDB Endowment, 2006.
  • A Zhu. Approximation algorithms for k-anonymity. Journal of Privacy, 2005.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Randomization k-anonymity l-diversity Tokenization t-closeness

Powered by PhDFocusTM