Research Article

A New Efficient Residue to Binary Converter for (5n+2)-bit Dynamic Range Moduli Set

by  Salifu Abdul-Mumin, Mohammed Ibrahim Daabo, Akobre Stephen
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 179 - Issue 34
Published: Apr 2018
Authors: Salifu Abdul-Mumin, Mohammed Ibrahim Daabo, Akobre Stephen
10.5120/ijca2018916726
PDF

Salifu Abdul-Mumin, Mohammed Ibrahim Daabo, Akobre Stephen . A New Efficient Residue to Binary Converter for (5n+2)-bit Dynamic Range Moduli Set. International Journal of Computer Applications. 179, 34 (Apr 2018), 18-21. DOI=10.5120/ijca2018916726

                        @article{ 10.5120/ijca2018916726,
                        author  = { Salifu Abdul-Mumin,Mohammed Ibrahim Daabo,Akobre Stephen },
                        title   = { A New Efficient Residue to Binary Converter for (5n+2)-bit Dynamic Range Moduli Set },
                        journal = { International Journal of Computer Applications },
                        year    = { 2018 },
                        volume  = { 179 },
                        number  = { 34 },
                        pages   = { 18-21 },
                        doi     = { 10.5120/ijca2018916726 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2018
                        %A Salifu Abdul-Mumin
                        %A Mohammed Ibrahim Daabo
                        %A Akobre Stephen
                        %T A New Efficient Residue to Binary Converter for (5n+2)-bit Dynamic Range Moduli Set%T 
                        %J International Journal of Computer Applications
                        %V 179
                        %N 34
                        %P 18-21
                        %R 10.5120/ijca2018916726
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper proposes an efficient residue to binary converter on a new three-moduli set (2(2n+1),2(2n+1)-1,2n-1) using the Mixed Radix Conversion. The proposed reverse converters are adder based and memoryless. In comparison with other moduli sets with similar dynamic range, the new schemes out-perform the existing schemes in terms of both hardware cost and propagation delay.

References
  • N.S. Szabo and R.I. Tanaka, Residue arithmetic and its applications to computer technology, McGraw Hill, New York, 1967.
  • M.A. Sonderstrand, W.K. Jenkins, G.A. Jullien, and F.J. Taylor, Residue number system arithmetic: Modern applications in digital signal processing, IEEE Press, New York, 1986.
  • M. Bhardwaj, T. Srikanthan, and C. T. Clarke, “A reverse converter for the 4 moduli super set {2^n-1, 2^n, 2^n+1, 2^(n+1)+1},” IEEE Conf. Comput. Arith., 1999.
  • A. Hariri, R. Rastegar, and K. Navi, “High Dyanamic Range 3-Moduli Set with Efficient Reverse Converter,” Int. J. Comput. Math. Appl.
  • S. Abdul-Mumin, P. A. Agbedemnab and M. I. Daabo: New Efficient Reverse Converters for 8n-bit Dynamic Range Moduli Set, International Journal of Computer Applications Volume 161 – No 9, pp: 23-27March 2017
  • E. K. Bankas and K. A. Gbolagade, “A New Efficient FPGA Design of Residue-To-Binary Converter,” Int. J. VLSI Des. Commun. Syst. VLSICS, vol. 4, no. 6, Dec. 2013.
  • H. Pettenghi, R. Chaves, and L. Sousa, “RNS Reverse Converters for Moduli Sets With Dynamic Ranges up to -bit,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 60, no. 6, pp. 1487–1500, Jun. 2013.
  • M. I. Daabo and K. A. Gbolagade, “RNS Overflow Detection Scheme for the Moduli set {M − 1, M},” J. Comput., vol. 4, no. 8, pp. 39–44, 2012.
  • K. A. Gbolagade, “New Adder-Based RNS-Binary Converters for the {2^(n+1)+1,2^(n+1)-1,2^n } Moduli Set.,” Int. Sch. Res. Netw
  • G. Jaberipur and H. Ahmadifar, “A ROM-less reverse RNS converter for moduli set 2q ?? 1, 2q ?? 3,” IET Comput. Digit. Tech., vol. 8, no. 1, pp. 11–22, Jan. 2014.
  • Y. Wang, X. Song, M. Aboulhamid, and H. Shen, “Adder-based residue to binary number converters for (2n − 1, 2n, 2n + 1),” IEEE Trans. Signal Process., vol.50, no.7, pp.1772–1779, July 2002.
  • W.Wang, M.N.S. Swamy, M.O. Ahmad, and Y.Wang, “A study of the residue-to-binary converters for the three-moduli sets,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol.50, no.2, pp.235–245, Feb. 2003.
  • B. Cao, C.H. Chang, and T. Srikanthan, “An efficient reverse converter for the 4-moduli set (2n − 1, 2n, 2n + 1, 22n + 1) based on the new Chinese remainder theorem,” IEEE Trans. Circuits Syst. I, vol.50, no.10, pp.1296–1303, Oct. 2003.
  • B. Cao, T. Srikanthan, and C.H. Chang, “Efficient reverse converters for the four-moduli sets (2n − 1, 2n, 2n + 1, 2n+1 − 1) and (2n −1, 2n, 2n +1, 2n−1 −1),” Proc. IEE Comput. Digit. Tech., vol.152, no.5, pp.687–696, Sept. 2005.
  • A.A. Hiasat, “VLSI implementation of new arithmetic residue to binary decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.13, no.1, pp.153–158, Jan. 2005.
  • P.V.A. Mohan, “RNS-to-binary converter for a new three-moduli set (2n+1 − 1, 2n, 2n − 1),” IEEE Trans. Circuits Syst. II, vol.54, no.9, pp.775–779, Sept. 2007.
  • P. V. Ananda Mohan and A. B. Premkumar, “RNS-to-binary converters for two four-moduli sets {2
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Reverse Converter Mixed Radix Conversion Dynamic Range Moduli Set Residue Number System

Powered by PhDFocusTM