Research Article

Multidimensional Data Analysis Facilities and Challenges: A Survey for Data Analysis Tools

by  Prarthana A. Deshkar, Parag S. Deshpande, A. Thomas
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 179 - Issue 13
Published: Jan 2018
Authors: Prarthana A. Deshkar, Parag S. Deshpande, A. Thomas
10.5120/ijca2018916178
PDF

Prarthana A. Deshkar, Parag S. Deshpande, A. Thomas . Multidimensional Data Analysis Facilities and Challenges: A Survey for Data Analysis Tools. International Journal of Computer Applications. 179, 13 (Jan 2018), 28-33. DOI=10.5120/ijca2018916178

                        @article{ 10.5120/ijca2018916178,
                        author  = { Prarthana A. Deshkar,Parag S. Deshpande,A. Thomas },
                        title   = { Multidimensional Data Analysis Facilities and Challenges: A Survey for Data Analysis Tools },
                        journal = { International Journal of Computer Applications },
                        year    = { 2018 },
                        volume  = { 179 },
                        number  = { 13 },
                        pages   = { 28-33 },
                        doi     = { 10.5120/ijca2018916178 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2018
                        %A Prarthana A. Deshkar
                        %A Parag S. Deshpande
                        %A A. Thomas
                        %T Multidimensional Data Analysis Facilities and Challenges: A Survey for Data Analysis Tools%T 
                        %J International Journal of Computer Applications
                        %V 179
                        %N 13
                        %P 28-33
                        %R 10.5120/ijca2018916178
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Data is one of the most important aspects of any commercial or research organization. Different technical processes are applied to extract information from data. This information gets transformed into knowledge for further decision making. Today many data analysis tools are available in the market which helps to convert data into useful information. The primary focus of these tools is to provide beneficial and helpful results to its users as per their requirements. The key to analyze any data is lies in its multidimensional structure. The new wave of technology has changed the form and volume of data. There is also a significant change in the type of users, it has been observed that non- technical data miners as target users of various analytical tools. Hence, in today’s world, it is essential for these analysis tools to adapt themselves to the changing needs of both the users and the technology and be updated with new statistical techniques, data mining algorithms and machine learning methodologies. In this paper, focus is on the advantages and challenges faced by some of the data analysis tools due to the change in form and volume of data.

References
  • C.L. Philip Chen, Chun-Yang Zhang “Data- intensive applications, challenges, techniques and technologies: A survey on Big Data”, Information Sciences.
  • 2014BusinessObjects User’s Guide,Copyright © 2004 Business Objects. All rights reserved.
  • SAP BO Architecture from http://bigclasses.com/blog/sap-bo-architecture
  • SAP BusinessObjects Business Intelligence Suit, 2015 SAP SE or an SAP affiliate company.
  • Architecture for Enterprise Business Intelligence, an overview of the microstrategy platform architecture for big data, cloud bi, and mobile applications.
  • MDX Cube Reporting Guide, Copyright © 2017 by MicroStrategy Incorporated.
  • IBM Cognos Dynamic Cubes,Copyright International Busines`s Machines Corporation 2012.
  • IBM Cognos Analytics – Reporting Version 11.0, Copyright IBM Corporation 2005, 2015.
  • Better planning and forecasting with IBM Predictive Analytics Using IBM Cognos TM1 with IBM SPSS Predictive Analytics to build better plans and forecasts,Copyright IBM Corporation 2014
  • IBM Cognos StatisticsWizard-driven statistical analysis incorporated into your business reporting powered by IBM SPSS Statistics Engine, Copyright IBM Corporation 2010
  • IBM SPSS Statistics 22, part 1 Descriptive Statistics summer 2014
  • Tableau,from https://nihlibrary.nih.gov/resources/tools/tableau
  • Tableau Server Study Guide
  • Tableau for the Enterprise: An Overview for IT,Authors: Marc Rueter, Senior Director, Strategic Solutions Ellie Fields, Senior Director, Product Marketing May 2012
  • SAP Business Objects Business Intelligence platform Document Version: 4.2 SP2 – 2016
  • Tableau Software Review, 2017 fromhttps://www.betterbuys.com/bi/reviews/tableau-business-intelligence/
  • Product Overview from https://www.betterbuys.com/bi/reviews/ibm-cognos-business-intelligence/
  • IBM Cognos Architecture from https://www.ibm.com/support/knowledgecenter/en/SSEP7J_10.2.2/com.ibm.swg.ba.cognos.dg_sdk.10.2.2.doc/i_d15e231405.html
  • Modeling components from https://www.ibm.com/support/knowledgecenter/en/SSEP7J_11.0.0/com.ibm.swg.ba.cognos.inst_cr_winux.doc/c_inst_modelingcomponents.html
  • Hints in BO Universe to Improve Report Performance, 2013 from https://dwbicastle.com/2013/12/13/hints-in-bo-universe-to-improve-report-performance/
  • Using Index Awareness in Business Objects Universe for Performance Optimization, from http://www.bidw.org/business-objects/universe-design/using-index-awareness-in-business-objects-universe-for-performance-optimization/
  • Tableau for the Enterprise: An Overview for IT, Marc Rueter, Senior Director, Strategic solutions Ellie Fields, Senior Director, Product Marketing , May 2012
  • Advanced Analytics with Tableau, Ian Coe, Product Manager
  • Performance analysis from http://www2.microstrategy.com/producthelp/10.4/OperationsManager/Content/Operations_Manager_Guide/Performance_analysis.htm
  • Managing users and roles from, https://www.ibm.com/support/knowledgecenter/en/SSMR4U_10.1.0/com.ibm.swg.ba.cognos.ig_exprss.10.1.0.doc/t_managingusersandroles.html
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Multidimensional Data Analysis Data Analysis Tools Data Mining Statistical Methods Machine Learning.

Powered by PhDFocusTM