Research Article

Logistic Regression Method for Sarcasm Detection of Text Data

by  Bipin Gupta, Ankur Gupta
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Issue 26
Published: Dec 2019
Authors: Bipin Gupta, Ankur Gupta
10.5120/ijca2019919451
PDF

Bipin Gupta, Ankur Gupta . Logistic Regression Method for Sarcasm Detection of Text Data. International Journal of Computer Applications. 177, 26 (Dec 2019), 1-4. DOI=10.5120/ijca2019919451

                        @article{ 10.5120/ijca2019919451,
                        author  = { Bipin Gupta,Ankur Gupta },
                        title   = { Logistic Regression Method for Sarcasm Detection of Text Data },
                        journal = { International Journal of Computer Applications },
                        year    = { 2019 },
                        volume  = { 177 },
                        number  = { 26 },
                        pages   = { 1-4 },
                        doi     = { 10.5120/ijca2019919451 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2019
                        %A Bipin Gupta
                        %A Ankur Gupta
                        %T Logistic Regression Method for Sarcasm Detection of Text Data%T 
                        %J International Journal of Computer Applications
                        %V 177
                        %N 26
                        %P 1-4
                        %R 10.5120/ijca2019919451
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The prediction analysis is approach which can predict future possibilities. This research work is based on the sarcasm detection from the text data. In the previous time SVM classification is applied for the sarcasm detection. The SVM classifier classifies data based on the hyper plane which give low accuracy. To improve accuracy for sarcasm detection logistic regression is applied in this work. The existing and proposed techniques are implemented in python and results are analyzed in terms of accuracy, execution time. The proposed approach has high accuracy and low execution time as compared to SVM classifier for sarcasm detection

References
  • Tharindu Weerasooriya, Nandula Perera, S.R. Liyanage, “A method to extract essential keywords from tweet using NLP”, 2016 l16th International Conference on Advances in ICT for Emerging Regions (ICTer).
  • Ibrahim A. Hameed, “Using Natural language processing for designing socially intelligent robots”, 2016 Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob).
  • L. SUanmali, M. S. Binwahlan, and N. Salim, “Sentence features fusion for text summarization using fuzzy logic in Hybrid Intelligent Systems”, 2009, HIS'09, Ninth International Conference on, vol. 1, IEEE, pp. 142-146.
  • L. Suanmali, N. Salim, and M. S. Binwahlan, “Fuzzy logic based method for improving text summarization”, 2009.
  • X. W. Meng Wang and C. Xu, “An approach to concept oriented text summarization”, Proceedings of ISClTS05, IEEE international conference, China, pp-1290-1293, 2005.
  • M. G. Ozsoy, F. N. Alpaslan, and Cicekli, “Text summarization using latent semantic analysis”, Journal of Information Science, vol. 37, no. 4, pp. 405-417, 2011.
  • Adyan Marendra Ramadhani, Hong Soon Goo, “Twitter Sentiment Analysis using Deep Learning Methods”, 7th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia, 2017.
  • K. Kaviya, C. Roshini, V. Vaidhehi, J. Dhalia Sweetlin, “Sentiment for Restaurant Rating”, 2017 IEEE International Conference on Smart Technologies and Management for Computing, Controls, Energy and Material (ICSTM).
  • Devika M D, Sunitha C, Amal Ganesh “Sentiment Analysis: A Comparative Study On Different Approaches”, Procedia Computer Science, vol.87 , pp. 44-49,2016
  • Dan Cao, Liutong Xu, “Analysis of Complex Network Methods for Extractive Automatic Text Summarization”, 2016 2nd IEEE International Conference on Computer and Communications, vol. 9, iss. 8, pp- 97-110, 2016
  • Rasim Alguliyev, Ramiz Aliguliyev, Nijat Isazade, “A Sentence Selection Model and HLO Algorithm for Extractive Text Summarization”, IEEE, vol. 9, iss. 8, pp- 97-110, 2016
  • Narendra Andhale, L.A. Bewoor, “An Overview of Text Summarization Techniques”, IEEE, vol. 9, iss. 8, pp- 97-110, 2016
  • Rupal Bhargavaand Yashvardhan Sharma, “MSATS: Multilingual Sentiment Analysis via Text Summarization”, IEEE, vol. 9, iss. 8, pp- 97-110, 2017
  • Archana N.Gulati, Dr. S. D. Sawarkar, “A novel technique for multi-document Hindi text summarization”, 2017 International Conference on Nascent Technologies in the Engineering Field (ICNTE-2017), vol. 8, pp. 1-4, 2017.
  • Manisha Gupta, Dr.Naresh Kumar Garg, “Text Summarization of Hindi Documents using Rule Based Approach”, International Conference on Micro-Electronics and Telecommunication Engineering, vol. 8, pp. 1-4, 2016.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

SVM Logistic Regression Sarcasm detection

Powered by PhDFocusTM