Research Article

Bisection Method for Three-parameter Eigenvalue Problems

by  Songita Boruah, Arun Kumar Baruah
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Issue 7
Published: Oct 2017
Authors: Songita Boruah, Arun Kumar Baruah
10.5120/ijca2017915603
PDF

Songita Boruah, Arun Kumar Baruah . Bisection Method for Three-parameter Eigenvalue Problems. International Journal of Computer Applications. 175, 7 (Oct 2017), 16-18. DOI=10.5120/ijca2017915603

                        @article{ 10.5120/ijca2017915603,
                        author  = { Songita Boruah,Arun Kumar Baruah },
                        title   = { Bisection Method for Three-parameter Eigenvalue Problems },
                        journal = { International Journal of Computer Applications },
                        year    = { 2017 },
                        volume  = { 175 },
                        number  = { 7 },
                        pages   = { 16-18 },
                        doi     = { 10.5120/ijca2017915603 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2017
                        %A Songita Boruah
                        %A Arun Kumar Baruah
                        %T Bisection Method for Three-parameter Eigenvalue Problems%T 
                        %J International Journal of Computer Applications
                        %V 175
                        %N 7
                        %P 16-18
                        %R 10.5120/ijca2017915603
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper discusses the Bisection method for Three-parameter eigenvalue problems keeping one parameter constant. Finally some numerical results are presented to illustrate the performance and application of this method.

References
  • Atkinson, F.V., 1972. ‘Multiparameter Eigenvalue Problems’, (Matrices and compact operators) Academic Press, New York, Vol.1
  • Atkinson, F.V., 1968. ‘Multiparameter spectral theory’, Bull.Am.Math.Soc., Vol.75, pp(1-28)
  • Baruah, A.K., 1987. ‘Estimation of eigen elements in a two-parameter eigen value problem’, Ph.D Thesis, Dibrugarh University, Assam.
  • Binding, P and Browne P. J., (1989). ‘Two parameter eigenvalue problems for matrices’, Linear algebra and its application, pp(139-157)
  • Browne, P.J., 1972. ‘A multiparameter eigenvalue problem’. J. Math. Analy. And Appl. Vol. 38, pp(553-568)
  • Changmai, J., 2009. ‘Study of two-parameter eigenvalue problem in the light of finite element procedure’. Ph. D Thesis, Dibrugarh University, Assam.
  • Collatz, L.(1968). ‘Multiparameter eigenvalue problems in linear product spaces’, J. Compu. and Syst.Scie., Vol. 2, pp(333-341)
  • Fox, L., Hayes, L. And Mayers, D.F., 1981. ‘The double eigenvalue problems, Topic in Numerical Analysis ’, Proc. Roy. Irish Acad. Con., Univ. College, Dublin, 1972, Academic Press, pp(93-112)
  • Horn, R.A,1994. ‘ Topics in Matrix Analysis’. Cambridge, Cambridge University.
  • Hua Daia, 2007. “Numerical methods for solving multiparameter eigenvalue problems,” International Journal of Computer Mathematics, 72:3, 331-347
  • Konwar, J., 2002. ‘Certain studies of two-parameter eigenvalue problems’, Ph.D Thesis, Dibrugarh University, Assam.
  • Browne Philip A. ‘Numerical Methods for Two-parameter eigenvalue problem’.
  • Plestenjak, B., 2003. Lecture Slides, ‘ Numerical methods for algebraic two parameter eigenvalue problems’, Ljubljana, University of Ljubljans.
  • Roach, G.F., (1976). ‘A Fredholm theory for multiparameter problems’, Nieuw Arch. V. Wiskunde, Vol.XXIV(3), pp(49-76)
  • Sleemen, B. D., 1971. ‘Multiparameter eigenvalue problem in ordinary differential equation’. Bul. Inst. Poll. Jassi. Vol. 17, No. 21 pp(51-60)
  • Sleeman, B.D., 1978, “Multiparameter Spectral Theory in Hilbert Space,” Pitman Press, London
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Multiparameter eigenvalue eigenvector Bisection Method

Powered by PhDFocusTM