Research Article

Fixed Point Theorem With C-Class Functions in Partial Metric Spaces

by  Jitender Kumar, Sachin Vashistha
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Issue 22
Published: Oct 2020
Authors: Jitender Kumar, Sachin Vashistha
10.5120/ijca2020920747
PDF

Jitender Kumar, Sachin Vashistha . Fixed Point Theorem With C-Class Functions in Partial Metric Spaces. International Journal of Computer Applications. 175, 22 (Oct 2020), 1-4. DOI=10.5120/ijca2020920747

                        @article{ 10.5120/ijca2020920747,
                        author  = { Jitender Kumar,Sachin Vashistha },
                        title   = { Fixed Point Theorem With C-Class Functions in Partial Metric Spaces },
                        journal = { International Journal of Computer Applications },
                        year    = { 2020 },
                        volume  = { 175 },
                        number  = { 22 },
                        pages   = { 1-4 },
                        doi     = { 10.5120/ijca2020920747 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2020
                        %A Jitender Kumar
                        %A Sachin Vashistha
                        %T Fixed Point Theorem With C-Class Functions in Partial Metric Spaces%T 
                        %J International Journal of Computer Applications
                        %V 175
                        %N 22
                        %P 1-4
                        %R 10.5120/ijca2020920747
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to prove a fixed point theorem using C- class function and , altering distance functions in partial metric spaces.

References
  • T. Abdeljawad, E. Karapinar and K. Tas: Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett, 24 (2011), 1900-1904.
  • O. Acar and I. Altun: Some generalization of Caristi type fixed point theorem on partial metric spaces, Filomat 26 (4) (2012), 833-837.
  • O. Acar, I. Altun and S. Romaguera: Caristi’s type mapping in complete partial metric space, Fixed Point Theory (Culj- Napoca), (to appear).
  • I. Altun and O. Acar: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl., 159 (2012), 2642-2648.
  • S. Cobzas: Completeness in quasi-metric spaces and Ekeland Variational Principle, Topol. Appl., 158 (2011), 1073-1084.
  • M. H. Escardo: Pcf Extended with real numbers, Theor. Comput. Sci., 162 (1996), 79-115.
  • M. Geraghty: On contractive mappings, Proc. Am. Math. Soc., 40 (1973), 604-608.
  • R. Heckmann: Approximation of metric spaces by partial metric space, Appl. Categ. Struct., 7 (1999), 71-83.
  • D. Ilic, V. Pavlovic and V. Rakocevic: Some new extensions of Banach’s contraction principle to partial metric space, Appl. Math. Lett., 24 (2011), 1326-1330.
  • S. G. Mattews: Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197.
  • S. Romaguera: A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and applications. Article ID 493298, (2010).
  • I. Altun and K. Sadaragani: Generalized Geraghty type mapping on partial metric spaces and fixed Point results, Arab. J. Math. (2013), 247-253.
  • I. Altun, D. Trkolu and B. E. Rhoades: Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory and Applications, 2007 (2007), article ID 17301, 9 pages.
  • E. Karapinar and I. M. Erhan: Fixed point theorem for operators on partial metric spaces, Appl. Math. Lett., 24 (2011), 1894-1899.
  • S. Oltar and O. Valero: Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Math. Univ. Trieste., 36 (2004), 17-26.
  • O. Valero: On Banach fixed point theorems for partial spaces, Appl. General Topol., 6 (2005), 229-240.
  • S. Romaguera: Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl., 218 (2011), 2398-2406.
  • S Romaguera: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Appl. General Topol., 12 (2011), 213-220.
  • D. Dukic, Z. Kadelburg and S. Radenovic: Fixed points of Geraghty type mapping in various generalized metric spaces, Abstract and Applied Analysis, 2011 (2011), article ID 561245, p. 13.
  • A. H. Ansari, Note on “- contractive type mappings and related fixed point”, The 2nd Regional Conference on Mathematics And Applications, PNU, September 2014, pp. 377- 380.
  • M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30 (1) (1984), 1-9.
  • A. S. Saluja, M. S. Khan, P. K. Jhade and B. Fisher: Some fixed point theorems for mapping involving rational type expressions in partial metric spaces, Applied Mathematics ENotes, 15 (2015), 147-161.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Fixed point theorem coincidence point metric space C-class function

Powered by PhDFocusTM