Research Article

On M-ambiguity of Words corresponding to a Parikh Matrix

by  Amrita Bhattacharjee
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 173 - Issue 9
Published: Sep 2017
Authors: Amrita Bhattacharjee
10.5120/ijca2017915439
PDF

Amrita Bhattacharjee . On M-ambiguity of Words corresponding to a Parikh Matrix. International Journal of Computer Applications. 173, 9 (Sep 2017), 44-48. DOI=10.5120/ijca2017915439

                        @article{ 10.5120/ijca2017915439,
                        author  = { Amrita Bhattacharjee },
                        title   = { On M-ambiguity of Words corresponding to a Parikh Matrix },
                        journal = { International Journal of Computer Applications },
                        year    = { 2017 },
                        volume  = { 173 },
                        number  = { 9 },
                        pages   = { 44-48 },
                        doi     = { 10.5120/ijca2017915439 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2017
                        %A Amrita Bhattacharjee
                        %T On M-ambiguity of Words corresponding to a Parikh Matrix%T 
                        %J International Journal of Computer Applications
                        %V 173
                        %N 9
                        %P 44-48
                        %R 10.5120/ijca2017915439
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

M-ambiguous words are the problem of Parikh matrix. In this paper an algorithm is introduced to find the M-ambiguous ternary words corresponding to a 4x4 matrix. The concept of M-ambiguity Reduction factor is introduced. With the help of this M-ambiguity Reduction factor the problem of M-ambiguity can be solved to some extent.

References
  • Atanasiu, A. 2007. Binary amiable words, Int. J. Found. Comput. Sci 18(2), 387- 400.
  • Atanasiu, A., Atanasiu, R and Petre, I. 2008. Parikh matrices and amiable words, Theoretical Computer Science 390, 102--109.
  • Atanasiu, A., Vide C.M. and Mateescu, A. 2001. On the injectivity of the parikh matrix mapping, Fundam. Informa. 46,1-11.
  • Bhattacharjee, A and Purkayastha, B.S. 2014. Parikh matrices and words over tertiary ordered alphabet, International Journal of Computer Applications 85(4), 10-15.
  • Bhattacharjee, A and Purkayastha, B.S. 2014.Application of ratio property in searching of m-ambiguous words and its generalization, 3rd International Conference on Soft Computing for Problem Solving, AISC (SocProS 2013), Springer India 258, 857-865.
  • Bhattacharjee, A and Purkayastha, B.S. 2014. Some alternative ways to find M-ambiguous binary words corresponding to a Parikh matrix, International Journal on Computational Sciences and Applications (IJCSA) 4(1),53-64.
  • Bhattacharjee, A and Purkayastha, B.S. 2014. Parikh matrices and words over ternary alphabet, 4th International Conference on Soft Computing for Problem Solving, AISC (SocProS 2014), Springer India 335,135-145.
  • Ding, C and Salomaa, A. 2006. On some problems of Mateescu concerning sub word occurences, Fundamenta Informaticae 72, 1-15.
  • Mateescu, A., Salomaa, A., Salomaa, K and Yu, S. 2001 A sharpening of the parikh mapping, Theoret. Informetics Appl. 35,551-564.
  • Mateescu, A., Salomaa, A., Salomaa, K and Yu, S. 2001. On an extension of the Parikh mapping, T.U.C.S Technical Report No 364.
  • Mateescu, A., Salomaa, A and Yu, S. 2004. Subword histories and parikh matrices, J. Comput. Syst. Sci. 68, 1-21.
  • Mateescu, A and Salomaa, A. 2004. Matrix indicators for subword occurences and ambiguity, Int. J. Found. Comput. Sci. 15, 277-292.
  • Parikh, R.J. 1966. On the context-free languages, Journal of the Association for Computing Machinery 13, 570-581.
  • Salomaa, A. 2003. Counting (scattered) subwords, EATCS Bulletin 81, 165-179.
  • Salomaa, A. 2005. Connections between subwords and certain matrix mappings, Theoretical Computer Science 340,188-203.
  • Salomaa, A. 2006. Independence of certain quantities indicating subword occurrences, Theoretical Computer Science 362(1), 222-231.
  • Salomaa, A. et. al, 2006. Subword conditions and subword histories, Information and Computation 204, 1741-1755.
  • Serbanuta, V.N. and Serbanuta. T.F. 2006. Injectivity of the Parikh matrix mappings revisited, Fundamenta Informaticae, XX, IOS Press, 1-19.
  • Subramanian, K.G., Huey, A. M and Nagar, A. K. 2009. On parikh matrices, Int. J. Found. Comput. Sci. 20(2), 211-219.
  • Subramanian, K.G., Isawasan, P and Venkat, I. 2013.Parikh matrices and istrail morphism, Malaysian Journal of Fundamental and Applied Sciences 9(1), 5-9.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Parikh matrix sub word amiable words or M- ambiguous words.

Powered by PhDFocusTM