Research Article

A Radial Point Interpolation Method for Pricing Options on a Dividend Paying Asset

by  Abdelmgid O. M. Sidahmed
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 172 - Issue 7
Published: Aug 2017
Authors: Abdelmgid O. M. Sidahmed
10.5120/ijca2017915180
PDF

Abdelmgid O. M. Sidahmed . A Radial Point Interpolation Method for Pricing Options on a Dividend Paying Asset. International Journal of Computer Applications. 172, 7 (Aug 2017), 1-6. DOI=10.5120/ijca2017915180

                        @article{ 10.5120/ijca2017915180,
                        author  = { Abdelmgid O. M. Sidahmed },
                        title   = { A Radial Point Interpolation Method for Pricing Options on a Dividend Paying Asset },
                        journal = { International Journal of Computer Applications },
                        year    = { 2017 },
                        volume  = { 172 },
                        number  = { 7 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/ijca2017915180 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2017
                        %A Abdelmgid O. M. Sidahmed
                        %T A Radial Point Interpolation Method for Pricing Options on a Dividend Paying Asset%T 
                        %J International Journal of Computer Applications
                        %V 172
                        %N 7
                        %P 1-6
                        %R 10.5120/ijca2017915180
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

We present the radial point interpolation method (RPIM) to solve problems for pricing American and European put options on a dividend paying asset. Using RPIM, we get a system of ordinary differential equations which is then solved by a time integration methods . To resolve the difficulties associated with solving the free boundary problem associated with American options, we use a penalty approach. Numerical experiments are presented which prove the computational efficiency of the RPIM.

References
  • Barone-Adesi G. and Whaley E. 1987. Efficient analytic approximation of American option values. The Journal of Finance, XLII (2).
  • Battauz A. and Pratelli M. 2004. Optimal stopping and American options with discrete dividends and exogenous risk, Insurance: Mathematics and Economics, 35, 255-265.
  • Company R., Gonzalez A.L. and Jodar L. 2006. Numerical solution of modified Black-Scholes equation pricing stock options with discrete dividend, Mathematical and Computer Modelling, 44, 1058-1068.
  • Han H. and Wu X. 2003. A fast numerical method for the Black-Scholes equation of American options, SIAM Journal of Numerical Analysis, 41(6), 2081-2095.
  • Kallast S. and Kivinukk A. 2003. Pricing and Hedging American Options Using Approximations by Kim Integral Equations, European Finance Review, 7 , 361-383.
  • Khaliq A.Q.M., Voss D.A. and Kazmi S.H.K. 2006. A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach, Journal of Banking & Finance, 30, 489-502.
  • Khaliq A.Q.M., Voss D.A. and Kazmi S.H.K. 2008. Adaptive θ-methods for pricing American options, Journal of Computational and Applied Mathematics, 222, 210-227.
  • Kim I.K. 1990. The analytical valuation of American options, Review of Financial Studies, 3, 547-572.
  • Liu G.R. and Gu Y. T. 2005. An Introduction to Meshfree Methods and Their Programming, Springer.
  • Liu Q., Liu F., Gu Y.T., Zhuang P., Chen J. and Turner I. 2015. A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation, Applied Mathematics and Computation, 256, 930-938.
  • Mallier R. and Alobaidi G. 2000. Laplace transforms and American options, Applied Mathematical Finance, 7, 241- 256.
  • Meyer G.H. 2002. Numerical investigation of early exercise in American puts with discrete dividends, Journal of Computational Finance, 5(2), 37-53.
  • Rad J.A., Parand K. and Ballestra L.V. 2015. Pricing European and American options by radial basis point interpolation, Applied Mathematics and Computation, 251, 363-377.
  • Tangman D.Y., Gopaul A. and Bhuruth M. 2008. A fast highorder finite difference algorithm for pricing American options, Journal of Computational and Applied Mathematics, 222(1), 17-29.
  • Vellekoop M.H. and Nieuwenhuis J.W. 2006. Efficient pricing of derivatives on assets with discrete dividends, Applied Mathematical Finance, 13(3), 265-284.
  • Wilmott P., Howison S. and Dewynne J. 1995. The Mathematics of Financial Derivatives: A Student Introduction, Cambridge University Press, Oxford, UK.
  • Zhao J. , Davison M. and Corless R.M. 2007. Compact finite difference method for American option pricing, Journal of Computational and Applied Mathematics, 206, 306 - 321.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

European put options American put options dividend paying radial point interpolation method

Powered by PhDFocusTM