Research Article

An Arithmetic Technique for Non-Abelian Group Cryptosystem

by  S. Iswariya, A. R. Rishivarman
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 161 - Issue 2
Published: Mar 2017
Authors: S. Iswariya, A. R. Rishivarman
10.5120/ijca2017913122
PDF

S. Iswariya, A. R. Rishivarman . An Arithmetic Technique for Non-Abelian Group Cryptosystem. International Journal of Computer Applications. 161, 2 (Mar 2017), 32-35. DOI=10.5120/ijca2017913122

                        @article{ 10.5120/ijca2017913122,
                        author  = { S. Iswariya,A. R. Rishivarman },
                        title   = { An Arithmetic Technique for Non-Abelian Group Cryptosystem },
                        journal = { International Journal of Computer Applications },
                        year    = { 2017 },
                        volume  = { 161 },
                        number  = { 2 },
                        pages   = { 32-35 },
                        doi     = { 10.5120/ijca2017913122 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2017
                        %A S. Iswariya
                        %A A. R. Rishivarman
                        %T An Arithmetic Technique for Non-Abelian Group Cryptosystem%T 
                        %J International Journal of Computer Applications
                        %V 161
                        %N 2
                        %P 32-35
                        %R 10.5120/ijca2017913122
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Most public key cryptosystems have been constructed based on abelian groups. It possible to a cryptosystem based on non-commutative properties of groups. It propose a new public key cryptosystem built on finite non abelian groups in this paper. It is convertible to a scheme in which the encryption and decryption are much faster than other well-known public key cryptosystems.

References
  • I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptography, Mathematical Research Letters 6 (1999) 1-5.
  • S. Blackburn, S. Galbraith, Cryptanalysis of two cryptosystems based on group actions, Proc. ASIACRYPT' 99 (2000) 52-61.
  • A. E. Brower, R. Pellikaan, E. R. Verheul, Doing more with fewer bits, Proc. ASIACRYPT' 99 (2000) 321-332.
  • D. Coopersmith, A. M. Odlzyko, R. Schroeppel, Discrete logarithms in GF(p), Algorithmica 1 (1986) 1-15.
  • T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transactions and Information Theory 31 (1985), 469-472.
  • S. Flannery, Cryptography: An investigation of a new algorithm vs. the RSA,http://cryptome.org/°annery-p.pdf, 1999.
  • T. W. Hungerford, Algebra, Springer Verlag
  • A. K. Lenstra, E. R. Verheul, The XTR Public key system, Proc. Crypto (2000) 1-20.
  • A. J. Menezes, P. C. Van Oorshot, S. A. Vanstone, Handbook of applied cryptography, CRC press, 1997.
  • R. Lidl, H. Niederreiter, Introduction to finite fields and their application, Cambridge University press, 1986.
  • K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. -S. Kang, C. Park, New public-key cryptosystem using braid groups, Proc. Crypto 2000 (2000) 166-184.
  • N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987) 203-209.
  • V. Miller, Use of elliptic curves in cryptography, Proc. Crypto 85 (1986) 417-426
  • K. Nyberg, R. Rueppel, A new signature scheme based on DSA giving message recovery, 1st ACM Conference on Computer and Communications Security, (1993) 58-61.
  • S.-H. Paeng, J.-W. Han, B. E. Jung, The security of XTR in view of the determinant, preprint, 2001.
  • S.-H. Paeng, A provably secure public key cryptosystem using finite non abelian groups, preprint, 2001.
  • A Myasnikov, V Shpilrain, A Ushakov , Noncommutative Cryptography and Complexity of Group theoretic Problems. American Mathematical Society, 2011.
  • T Boaz, Polynomial-time solutions of computational problems in noncommutative-algebraic cryptography. Journal of Cryptology (2015) 601–622.
  • D Grigoriev, I Ponomarenko, Homomorphic Public-Key Cryptosystems Over Groups and Rings. Quaderni di Matematica, 2005.
  • AG Myasnikov, V Shpilrain, A Ushakov, Group-Based Cryptography Advanced Courses in Mathematics. CRM Barcelona, 2007.
  • M Batty, S Braunstein, A Duncan, S Rees, Quantum algorithms in group theory. Cont. Math. 349 (2003) 1–62.
  • LGuL Wang, K Ota, M Dong, Z Cao, Y Yang, public key cryptosystems based on non-Abelian factorization problems, Security and Communication Network (2013) 912–922.
  • G Baumslag, B Fine, X Xu, Cryptosystems using Linear Groups Appl. based cryptographic Primitives. Desmedt YG. Public Key Cryptography – PKC, Springer (2003) 187-198.
  • G Baumslag, B Fine, X Xu, A Proposed Public Key Cryptosystem Using the Modular Group. Cont.Math. 421 (2007) 35-44.
  • SS Magliveras, DR Stinson, New approaches to designing public key cryptosystem using one-way functions and trapdoors infinite group. Journal of Cryptology (2002) 285-297.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Non- Abelian Group Public key Encryption Decryption

Powered by PhDFocusTM