Research Article

Generalized (k, r) – Lucas Numbers

by  Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 159 - Issue 6
Published: Feb 2017
Authors: Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore
10.5120/ijca2017912962
PDF

Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore . Generalized (k, r) – Lucas Numbers. International Journal of Computer Applications. 159, 6 (Feb 2017), 20-22. DOI=10.5120/ijca2017912962

                        @article{ 10.5120/ijca2017912962,
                        author  = { Ashwini Panwar,Kiran Sisodiya,G.P.S. Rathore },
                        title   = { Generalized (k, r) – Lucas Numbers },
                        journal = { International Journal of Computer Applications },
                        year    = { 2017 },
                        volume  = { 159 },
                        number  = { 6 },
                        pages   = { 20-22 },
                        doi     = { 10.5120/ijca2017912962 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2017
                        %A Ashwini Panwar
                        %A Kiran Sisodiya
                        %A G.P.S. Rathore
                        %T Generalized (k, r) – Lucas Numbers%T 
                        %J International Journal of Computer Applications
                        %V 159
                        %N 6
                        %P 20-22
                        %R 10.5120/ijca2017912962
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have defined new kinds of (k, r)-Lucas number. But the difference among these sequences comes to the forefront not only through the value of the natural number k but also through the value of new parameter which we find involved in the definition of this distance. Consequently we have various properties of these numbers for study.

References
  • B. Singh, P. Bhadouria and O. Sikhwal , Sum Properties for the k- Lucas number with arithmetic indexes, , J. Math. Comput. Sci., 4(2014), 105- 117.
  • D. Brod, K. Piejko and I. Wloch, Distance Fibonacci numbers, distance Lucas numbers and their applications, ArsCombinatoria, CXII(2013), 397- 410 .
  • D. Tasci and E. Kilic, On the order k- generalized Lucas Numbers, Appl. Math. Comput. 155(2014), 637- 64 .
  • I. Wloch, U. Bednarz, D. Brod, A. Wloch and M. Wolowiecz-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Mathematics,161(2013), 2695-2701.
  • K. Keygisiz and A. Sahin, New generalizations of Lucas numbers, Gen. Math. Notes, , 10(1) (2012), 63-77.
  • S. Falcon and A. Plaza, On the k- Lucas numbers, international Journal of Contemporary Mathematical Sciences, 21(6) (2011), 1039-1050.
  • S. Falcon, On k-Lucas numbers of arithmetic indexes,Applied Mathematics and Computation, 3(2012), 1202- 1206.
  • S. Falcon, On Lucas triangle and its relationship with k- Lucas numbers, J. Math. Comput. Sci. 2(2012), 425-34.
  • Y.K.Gupta, V.H.Badshah, M.Singh, K.Sisodiya, Diagonal Function of k-Lucas Polynomial, Turkish Journal of Analysis and Number Theory 3(2)(2015), 49-52
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

k– Lucas Number (k r) Lucas Number Binet`s Formula Generating engines.

Powered by PhDFocusTM