Research Article

Fixed Point Theorems for Iterated mappings via Caristi-Type Results

by  Samih Lazaiz, Mohamed Aamri, Omar Zakary
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 156 - Issue 4
Published: Dec 2016
Authors: Samih Lazaiz, Mohamed Aamri, Omar Zakary
10.5120/ijca2016912419
PDF

Samih Lazaiz, Mohamed Aamri, Omar Zakary . Fixed Point Theorems for Iterated mappings via Caristi-Type Results. International Journal of Computer Applications. 156, 4 (Dec 2016), 1-6. DOI=10.5120/ijca2016912419

                        @article{ 10.5120/ijca2016912419,
                        author  = { Samih Lazaiz,Mohamed Aamri,Omar Zakary },
                        title   = { Fixed Point Theorems for Iterated mappings via Caristi-Type Results },
                        journal = { International Journal of Computer Applications },
                        year    = { 2016 },
                        volume  = { 156 },
                        number  = { 4 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/ijca2016912419 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2016
                        %A Samih Lazaiz
                        %A Mohamed Aamri
                        %A Omar Zakary
                        %T Fixed Point Theorems for Iterated mappings via Caristi-Type Results%T 
                        %J International Journal of Computer Applications
                        %V 156
                        %N 4
                        %P 1-6
                        %R 10.5120/ijca2016912419
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we apply our former result [S. Lazaiz, K. Chaira, M. Aamri, and El M. Marhrani. Some remarks on Caristi type fixed point theorem. International Journal of Pure and Applied Mathematics, 104 (4): 585–597, 2015] to give a new results of iterated contraction mapping in complete metric space. As application we investigate the existence and uniqueness of solution for the nonlinear integral equation.

References
  • Felix E Browder. On the convergence of successive approximations for nonlinear functional equations. In Indagationes Mathematicae (Proceedings), volume 71, pages 27–35. Elsevier, 1968.
  • Ivar Ekeland. Sur les problemes variationnels. CR Acad. Sci. Paris Sér. AB, 275:A1057–A1059, 1972.
  • H Brézis and FE Browder. A general principle on ordered sets in nonlinear functional analysis. Advances in Mathematics, 21(3):355–364, 1976.
  • Jean-Pierre Aubin and Hélène Frankowska. Set-valued analysis. Springer Science & Business Media, 2009.
  • Leila Gholizadeh. A fixed point theorem in generalized ordered metric spaces with application. J. Nonlinear Sci. Appl, 6:244–251, 2013.
  • Adoon Pansuwan, Wutiphol Sintunavarat, Vahid Parvaneh, and Yeol Je Cho. Some fixed point theorems for (α , θ, k)- contractive multi-valued mappings with some applications. Fixed Point Theory and Applications, 2015(1):1–11, 2015.
  • Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math, 3(1):133–181, 1922.
  • Ljubomir B Ciric. Generalized contractions and fixed-point theorems. Publ. Inst. Math.(Beograd)(NS), 12(26):19–26, 1971.
  • Michael Edelstein. An extension of Banach’s contraction principle. Proceedings of the American Mathematical Society, 12(1):7–10, 1961.
  • Yuqiang Feng and Sanyang Liu. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. Journal of Mathematical Analysis and Applications, 317(1):103–112, 2006.
  • Jacek R Jachymski. Caristi’s fixed point theorem and selections of set-valued contractions. Journal of Mathematical Analysis and Applications, 227(1):55–67, 1998.
  • Amram Meir and Emmett Keeler. A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2):326–329, 1969.
  • E Rakotch. A note on contractive mappings. Proceedings of the American Mathematical Society, 13(3):459–465, 1962.
  • Ya I Alber and Sylvie Guerre-Delabriere. Principle of weakly contractive maps in hilbert spaces. In New Results in Operator Theory and Its Applications, pages 7–22. Springer, 1997.
  • BE Rhoades. Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods & Applications, 47(4):2683–2693, 2001.
  • PN Dutta and Binayak S Choudhury. A generalisation of contraction principle in metric spaces. Fixed Point Theory and Applications, 2008(1):1–8, 2008.
  • VM Sehgal. A fixed point theorem for mappings with a contractive iterate. Proceedings of the American Mathematical Society, 23(3):631–634, 1969.
  • VW Bryant. A remark on a fixed-point theorem for iterated mappings. The American Mathematical Monthly, 75(4):399– 400, 1968.
  • LF Guseman. Fixed point theorems for mappings with a contractive iterate at a point. Proceedings of the American Mathematical Society, 26(4):615–618, 1970.
  • James Caristi. Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society, 215:241–251, 1976.
  • S Lazaiz, K Chaira, M Aamri, and El M Marhrani. Some remarks on Caristi type fixed point theorem. International Journal of Pure and Applied Mathematics, 104(4):585–597, 2015.
  • Michael A Geraghty. On contractive mappings. Proceedings of the American Mathematical Society, 40(2):604–608, 1973.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Fixed point Caristi’s theorem Remarks Nonlinear Integral equations

Powered by PhDFocusTM