Research Article

Stability of Quartic Functional Equation in Random 2-Normed Space

by  Roji Lather, Kusum Dhingra
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 147 - Issue 2
Published: Aug 2016
Authors: Roji Lather, Kusum Dhingra
10.5120/ijca2016911004
PDF

Roji Lather, Kusum Dhingra . Stability of Quartic Functional Equation in Random 2-Normed Space. International Journal of Computer Applications. 147, 2 (Aug 2016), 39-42. DOI=10.5120/ijca2016911004

                        @article{ 10.5120/ijca2016911004,
                        author  = { Roji Lather,Kusum Dhingra },
                        title   = { Stability of Quartic Functional Equation in Random 2-Normed Space },
                        journal = { International Journal of Computer Applications },
                        year    = { 2016 },
                        volume  = { 147 },
                        number  = { 2 },
                        pages   = { 39-42 },
                        doi     = { 10.5120/ijca2016911004 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2016
                        %A Roji Lather
                        %A Kusum Dhingra
                        %T Stability of Quartic Functional Equation in Random 2-Normed Space%T 
                        %J International Journal of Computer Applications
                        %V 147
                        %N 2
                        %P 39-42
                        %R 10.5120/ijca2016911004
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we present the Hyers- Ulam- Rassias stability of quartic functional equation f(2x + y) + f(2x – y) = 4.f(x + y) + 4f(x – y) + 24f(x) ( 6f(y) in Random 2- Normed space .

References
  • A. Alotaibi, S.A. Mohiuddine; On the stability of a cubic functional equation in random 2-normed spaces, Advances in Difference Equations, 1,39 (2012) pp. 1-10.
  • D.H. Hyers; On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941) 222-224.
  • D.H. Hyers, G. Isac and Th. M. Rassias; Stability of functional equations in several variables, Birkhauser, Basel, (1998).
  • E. Elqorachi; Y. Manar and Th. M. Rassias; Hyers-Ulam stability of the quadratic functional equation, Int. J. Non linear Anal. Appl. 1(2010) 11-20.
  • E. Elqorachi, Y. Manar and Th. M. Rassias; Hyers-Ulam stability of quadratic and Jensen functional equations on unbounded domains, J. Math. Sci. Advances and Applications 4(2010) 287-301.
  • G.L. Forti; An existence and stability theorem for a class of functional equations, Stochastica 4(1980) 23-30.
  • G.L. Forti; Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50(1995) 143-190.
  • I. Golet; On probabilistic 2-normed spaces, Novi Sad J. Math. 35, (2006) 95-102.
  • K. Petapirak and P. Nakmahachalasint; A quartic functional equation and its generalized Hyers-Ulam-Rassias stability, Thai. J. of Maths. Spec, Issue (Annual Meeting in Math.) (2008) 77-84.
  • M .Kumar, Anil; Stability of Cubic Functional Equations in 2- Normed Space, 2, 3 (2015) 55-58.
  • P. Gavruta; A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994) 431-436.
  • S.M. Jung; Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, springer, New York, (2011).
  • S.M. Jung; Stability of the quadratic equation of Pexider type, Abh. Math. Sem Univ. Hamburg 70(2000) 175-190.
  • S.M. Jung and B. Kim; Local stability of the additive functional equation and its applications, IJMMS (2003) 15-26.
  • S. Czerwik; On the stability of the quadratic mapping in normed spaces, abh. Math. Sem. Univ. Hamburg. 62 (1992) 59-64.
  • S.M. Ulam; A collection of Mathematical Problems, Interscience Publ. New York, 1961. Problems in Modern Mathematics, Wiley, New York, 1964.
  • S. Gahler; Linear 2-normierte R aumen, Math. Nachr, (28) (1964)1-43.
  • T. Aoki; On the stability of the linear transformation n Banach Spaces, J. Math. Soc. Japan 2 (1950) 64-66.
  • Th. M. Rassias; On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
  • Th. M. Rassias and P. Semrl; On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114(1992) 989-993.
  • Th. M. Rassias; On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991) 106-113.
  • Th. M. Rassias; The problem of S.M. Ulam for approximately multiplicative mapping, J. Math. Anal. Appl. 246 (2000) 352-378.
  • Th. M. Rassias; On the stability of the functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23-130.
  • Th. M. Rassias; On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251(2000) 264-284.
  • Z. Gajda; On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991) 431-434.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Hyers-Ulam-Rassias stability Quartic functional equation Random 2- Normed space.

Powered by PhDFocusTM