Research Article

BTRU, A Rational Polynomial Analogue of NTRU Cryptosystem

by  Khushboo Thakur, B. P. Tripathi
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 145 - Issue 12
Published: Jul 2016
Authors: Khushboo Thakur, B. P. Tripathi
10.5120/ijca2016910769
PDF

Khushboo Thakur, B. P. Tripathi . BTRU, A Rational Polynomial Analogue of NTRU Cryptosystem. International Journal of Computer Applications. 145, 12 (Jul 2016), 22-24. DOI=10.5120/ijca2016910769

                        @article{ 10.5120/ijca2016910769,
                        author  = { Khushboo Thakur,B. P. Tripathi },
                        title   = { BTRU, A Rational Polynomial Analogue of NTRU Cryptosystem },
                        journal = { International Journal of Computer Applications },
                        year    = { 2016 },
                        volume  = { 145 },
                        number  = { 12 },
                        pages   = { 22-24 },
                        doi     = { 10.5120/ijca2016910769 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2016
                        %A Khushboo Thakur
                        %A B. P. Tripathi
                        %T BTRU, A Rational Polynomial Analogue of NTRU Cryptosystem%T 
                        %J International Journal of Computer Applications
                        %V 145
                        %N 12
                        %P 22-24
                        %R 10.5120/ijca2016910769
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

NTRU is a public key cryptosystem based on polynomial ring over Z. Replacing Z with the ring of polynomial in one variable α over a rational field. In this paper the complexity of BTRU cryptosystem is faster than NTRU cryptosystem.

References
  • D. Coppersmith, A. Shamir, “Lattice attacks on NTRU”, in EUROCRYPT, (1997), 52-61.
  • R. Crandall and C. Pomerance, Prime Numbers- A Computational Perspective, Second Edition, Springer, (2005), Section 9.5.1, Karatsuba and ToomCook methods, pg.473.
  • J. Hoffstein, J. Pipher and J. H. Silverman NTRU: a new high speed public key cryptosystem, Preprint; presented at the rump session of Crypto96, (1996).
  • J. Hoffstein, J. Pipher, J. H. Silverman, NTRU: A ring-based public key cryptosystem, In Lecture Notes in Computer Science Springer-Verlag, (1998), 267-288.
  • J. Hoffstein, J. Pipher, J. H. Silverman, An Introduction to Mathematical Cryptography, Science Business Media, Springer, (2014).
  • IEEE P1363, Standard Specifications For Public-Key Cryptography, http://grouper. ieee.org/groups/1363/.
  • D. Knuth, The Art of Computer Programming, Volume 2. Third Edition, Addison-Wesley, (1997), pg.294.
  • R. Kouzmenko, Generalizations of the NTRU cryptosystem, Master's thesis, Polytechnique, Montreal, Canada, (2006).
  • J. Pipher, Lectures on the NTRU encryption algorithm and digital signature scheme, Brown University, (2002).
  • R. A. Perlner and D. A. Cooper, Quantum resistant public key cryptography, a survey, in: Proc. of ACM, (2009), 85-93.
  • J. H. Silverman, A Meet-In-The-Middle on an NTRU Private Key, preprint available from www.ntru.com.
  • P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Review 41 (1999), 303-332.
  • M. Nevins, C. Karimianpour, A. Miri, Ntru over rings beyond Z, Codes and Cryptography, 56(1) (2010), 65-78.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

NTRU Rational Field Encryption Decryption

Powered by PhDFocusTM