Research Article

Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions

by  Avneet Saini
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 143 - Issue 7
Published: Jun 2016
Authors: Avneet Saini
10.5120/ijca2016910265
PDF

Avneet Saini . Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions. International Journal of Computer Applications. 143, 7 (Jun 2016), 46-56. DOI=10.5120/ijca2016910265

                        @article{ 10.5120/ijca2016910265,
                        author  = { Avneet Saini },
                        title   = { Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions },
                        journal = { International Journal of Computer Applications },
                        year    = { 2016 },
                        volume  = { 143 },
                        number  = { 7 },
                        pages   = { 46-56 },
                        doi     = { 10.5120/ijca2016910265 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2016
                        %A Avneet Saini
                        %T Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions%T 
                        %J International Journal of Computer Applications
                        %V 143
                        %N 7
                        %P 46-56
                        %R 10.5120/ijca2016910265
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Conformations of achiral and chiral aromatic homo-polypeptoids of Nphe, Nspe and Nrpe were studied by quantum mechanics and molecular dynamics approaches. The amide bond geometry in model peptoids Ac-X-NMe2 could be both cis and trans and the Nphe peptoids adopted degenerate conformations of opposite handedness with Φ, Ψ values of ~ ± 120º, ± 150º with trans amide bond geometry. This degeneracy was lifted with increase in chain length; in favor of the structure with Φ = -120º, Ψ = -150º. Polypeptoids of Nspe and Nrpe with and without protecting groups populated states with Φ, Ψ values of ~ 110º, 155º & -110º, -165º respectively with trans amide bond geometry. Simulation studies in water revealed that with protecting groups peptoid Ac-(Nspe/Nrpe)5-NMe2 populated with cis amide bond geometry in PP type I and inverse PP type I helices respectively due to interactions between the solvent molecules and carbonyl oxygens of the backbone. Without protecting groups these polypeptoids populated poly-L-proline type II conformations. In DMSO these peptoids were shown to populate in PP type-I and inverse PP type-I helices and without protecting groups they could be realized in PP type-I as well as inverse PP type-I conformation whereas the peptoid -Nrpe6-NH2 could be realized in inverse PP type-I conformation. Analysis of simulation results as a function of time ruled out amide bond inter-conversions between cis and trans geometry. Hence, like polyproline peptoids can also be exploited as molecular spacers.

References
  • Miller S M, Simon R J, Ng S, Zuckermann R N, Kerr J M & Moos W H (1995) Drug. Dev. Res. 35, 20-32
  • Kwon Y & Kodadek T (2007) J. Am. Chem. Soc. 129, 1508-1509
  • Miller S M, Simon R J, Ng S, Zuckermann R N, Kerr J M & Moos W H (1994) Bioorg. Med. Chem. Lett. 4, 2657–2662
  • Proulx C, Yoo S, Connolly M D & Zuckermann R N (2015) J. Org. Chem., Article ASAP
  • Huang M L, Benson M A, Shin S B Y, Torres V J & Kirshenbaum K (2013) Eur. J. Org. Chem. 2013, 3560–3566
  • Huang W, Seo J, Willingham S B, Czyzewski, A M, Gonzalgo M L, Weissman I L & Barron A E (2014) PLOSOne 9, e90397
  • Mojsoska B, Zuckermann R N & Jenssena H (2015) Antimicrob. Agents Chemother. 59, 4112-20
  • Patch J A & Barron A E (2003) J. Am. Chem. Soc. 123, 12092-12093
  • Seurynck S L, Patch J A & Barron A E (2005) Chem. Biol. 12, 77-88
  • Rossa T M, Zuckermann R N, William C R & Frey H (2008) Neuroscience Letters 439, 30–33
  • Statz A R, Meagher R J, Barron A E & Messersmith P B (2005) J. Am. Chem. Soc.127, 7972-7973
  • Statz A R, Meagher R J, Barron A E & Messersmith P B (2008) Soft Matter 4, 131–139
  • Lau K H A, Ren C, Sileika T S, Park S H, Szleifer I & Messersmith P B (2012) Langmuir 28, 16099−16107
  • Ham H O, Park S H, Kurutz J W, Szleifer I G & Messersmith P B (2013) J. Am. Chem. Soc. 135, 13015–13022
  • Wender P A, Mitchell D J, Pattabiraman K, Pelkey E T, Steinman L & Rothbard J B (2000) Proc. Natl. Acad. Sci. USA. 97, 13003–13008
  • Schröder T, Schmitz K, Niemeier N, Balaban T S, Krug H F, Schepers U & Bräse S (2007) Bioconjugate Chem. 18, 342–354
  • Nnanabu E & Burgess K (2006) Org. Lett. 8,1259-1262
  • Shin S B Y, Yoo B, Todaro L J & Kirshenbaum K (2007) J. Am. Chem. Soc.129, 3218-3225
  • Pokorski J K, Jenkins L M M, Feng H, Durell S R, Bai Y & Appella D H (2007) Org. Lett. 9, 2381-2383
  • Nandel F S & Jaswal R R (2013) Ind J. Biochem. Biophys. 51, 7-18
  • Maigret B, Perahia D & Pullman B (1970) J. Theor. Biol. 29, 275-291
  • Subramanian E & Parthasarathy R (1989) Int. J. Pept. Prot. Res. 33, 345-347
  • Armand P, Kirshenbaum K, Falicov A, Dunbarck Jr R L, Dill K A, Zuckermann R N & Cohen F E (1997) Folding and Design 2, 369-375
  • Baldauf C, Günther R & Hofmann H J (2006) Phys. Biol. 3, S1–S9
  • Zuckermann R N, Kerr J M, Kent S B H & Moost W H (1992) J. Am. Chem. Soc. 114, 10646-10647
  • Sui Q, Borchardt D & Rabenstein D L (2007) J. Am. Chem. Soc. 129, 12042-12048
  • Wu C W, Kirshenbaum K, Sanborn T J, Huang K, Zuckermann R N, Barron A E, Patch J A, Dill K A (2003) J. Am. Chem. Soc. 125, 13525-13530
  • Wu C W, Sanborn T J, Huang K, Zuckermann R N & Barron A E (2001) J. Am. Chem. Soc. 123, 6778-6784
  • Wu C W, Sanborn T J, Zuckermann R N & Barron A E (2001) J. Am. Chem. Soc. 123, 2958-2963
  • Kirshenbaum K, Zuckermann R N, Dill K A, Barron A E, Armand P, Goldsmith R & Cohen E (1998). Proc. Natl. Acad. Sci. 95, 4303-4308
  • Jordan P A, Paul B, Butterfoss G L, Renfrew P D, Bonneau R & Kirshenbaum K (2011) Biopoymers (Peptide Science) 96, 617-625
  • Shah N H, Butterfoss G L, Nguyen K, Yoo B, Bonneau R, Rabenstein D L & Kirshenbaum K (2008) J. Am. Chem. Soc. 130, 16622-16632
  • Zhang S, Prabpai S, Kongsaeree P & Arvidsson P I (2006) Chem. Commun 497-499
  • Fowler S A, Luechapanichkul R & Blackwell H E (2009) J. Org. Chem. 74, 1440–1449
  • Stringer J R, Crapster J A, Guzei I A & Blackwell H E (2011) Biopolymer peptide Science 96, 604-616
  • Stringer J R, Crapster J A, Guzei I A & Blackwell H E (2010) J. Org. Chem. 75, 6068-6078
  • Stringer J R, Crapster J A, Guzei I A & Blackwell H E (2011) J. Am. Chem. Soc. 133, 15559-15567
  • Qiu Y, Chen P, Guo P, Li Y & Liu M (2008) Advanced Materials 20, 2908-2913
  • Moretto A, Peggion C, Formaggio F, Crisma M, Kaptein B, Boxteman Q B & Toniolo C (2005) Chirality 17, 481-487
  • Pullman B & Pullman A (1974) Adv. Protein Chem. 28, 347-526
  • Lawrence R P & Thompson C(1982) J. Mol. Str: Theochem. 88, 37-43
  • Aleman C & Casanovas J (1994) Chem Soc Perkins Trans 2, 563-568
  • Aleman C & Casanovas J (1995) Biopolymers 36, 71-82
  • Nandel F S & Khare B (2005) Biopolymers 77, 63-73
  • Nandel F S, Malik N, Singh B & Jain D V S (1999) Int. J. Quant. Chem. 72, 15-23
  • Nandel F S, Malik N, Singh B & Virdi M (1999) Indian J. Biochem. Biophys. 36, 195-203
  • Weiner S J, Singh U C, Donell T J O & Kollman P A (1984) J. Am. Chem. Soc. 106, 6243-6245
  • Mohle K & Hoffman H J (1998) J. Pept. Res. 51, 19-28
  • Aduzbei A A & Sternberg J E (1993) J. Mol. Biol. 229, 472-493
  • Adzubei A A, Eisenmenger F, Tumanyan V G, Zinke M & Esipova NG (1987) Biophys Biochem Res Commun 146, 934-938
  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E & Berendsen H J C (2005) J. Comp. Chem. 26, 1701–1718
  • Butterfoss G L, Renfren P D, Kuhlman B & Kirshenbaum K A (2009) J. Am. Chem. Soc. 131, 16798-16807
  • Schuettelkopf A W & Van Aalten D M F (2004) Acta Crystallogr. D60, 1355-1363
  • Berendsen H J C, Postma, J P M, Van Gunsteren W F & Hermans J (1981) In B. Pullman, editor, Intermolecular Forces, Dordrecht: D. Reidel Publishing Company,331–342
  • Liu H, Muller-Plathe F & Van Gunsteren W F (1995) J. Am. Chem. Soc. 117, 4363-4366
  • Van Gunsteren W F, Billeter S R, Eising A A, Hünenberger P H, Krüger P, Mark A E, Scott W R P & Tironi I G (1996) Biomolecular Simulation: The GROMOS96 manual and user guide, Zürich, Switzerland: Hochschulverlag AG an der ETH Zürich
  • TingGuang S, Ming L, WeiZu C & CunXin W (2010) Sci China Life Sci 53, 620-630
  • Hockney R W & Eastwood J W (1981) Computer simulation using particles, New York, McGraw-Hill
  • Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) J. Chem. Phys. 81: 3684–3690
  • Hess B, Bekker H, Berendsen H J C & Fraaije J G E M (1997) J. Comp. Chem. 18, 1463–1472
  • Essmann U, Perera L, Berkowitz M L, Darden T, Lee H & Pedersen L G (1995) J. Chem. Phys.103, 8577–8592
  • Voelz V A, Dill K A & Chorny I (2011) Peptide Science 96, 639-650
  • Zi H F & Zang H X (2005) J. Mol. Structure (Theochem) 756, 109-112
  • Jain A, Purohit C K, Verma S & Shankararamankrishnan R (2007) The J. of Physical Chemistry B Letters 111, 8680-8683
  • Egli M & Sarkhel S (2007) Acc. Chem. Res. 40, 197-205
  • Gautrot J E, Hodge P, Cupertino D & Helliwell M (2006) New J. of Chemistry 30, 1801-1807
  • Maccallum P H, Poet R & Milner-White E J (1995) J. Mol. Biol. 48, 374-384
  • Maccallum P H, Poet R & Milner-White E J (1995) J. Mol. Biol. 248, 361-373
  • Allen F H, Baalham C A, Lommerse J P M & Raithby P R(1998) Acta Crystallogr B54, 320-329
  • Allen F H, Dacies J E, Galloy J J, Johnson O, Kennard O, Macrae C F, Mitchell E M, Mitchell G F, Smith J M & Watson D G (1991) J Chem Inf Comput Sci 31, 187-204
  • Deane C M, Allen F H, Taylor R & Blundell T L (1999) Protein Engineering 12, 1025-1028
  • Nandel F S, Kaur H, Malik N, Shankar N & Jain D V S (2001) Indian J. Biochem. Biophys. 38, 417-425
  • Nandel F S & Kaur H (2003) Indian J. Biochem. Biophys. 40, 265-273
  • Nandel F S & Saini A (2011) J. of Biophysical Chemistry 2, 37-48
  • Nandel F S, Jaswal R R, Saini A, Nandel V & Shafique M (2014) Journal of Molecular Modeling 20, 24-29
  • Desiraju G R & Steiner T(1999) The Weak Hydrogen Bond: In Structural Chemistry and Biology, Oxford Science Publications
  • Peggion E, Cosani A, Verdini A S, Del Pra A & Mammi M (1968) Biopolymers 6, 1477-1486
  • Urry D W, Glicksan J D, Mayery D F & Haider J (1972) Biochemistry 11, 487-493
  • Schuler B, Lipman E A, Steinbach P J, Kumke M & Eaton W A (2005) Proc Natl Acad Sci USA 102, 2754–2759
  • Ungar-waron H, Gurari D, Hurwitz E & Sela M (1973) Eur J Immunol 3, 201–205
  • Miranda L P & Alewood P (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 1181-1186
  • Sato S, Kwon Y, Kamisuki S, Srivastava N, Mao Q A, Kawazoe Y & Uesugi M (2007) J Am Chem Soc 129, 873–880
  • Jitariu L C, Wilson C & Hirst D M (1997) Journal of Molecular Structure (Theochem) 391, 111-116.
  • Schmid E D & Brodbek E (1985) Can. J. Biophys. 63, 1365-1371.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

biomimetic Nphe/Nrpe/Nspe peptoids simulations conformational analysis PP and inverse PP structures.

Powered by PhDFocusTM