Research Article

Student Progress Predictor

by  R. Ksohy, A.V. Sakpal, R. More
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 140 - Issue 12
Published: April 2016
Authors: R. Ksohy, A.V. Sakpal, R. More
10.5120/ijca2016909521
PDF

R. Ksohy, A.V. Sakpal, R. More . Student Progress Predictor. International Journal of Computer Applications. 140, 12 (April 2016), 28-32. DOI=10.5120/ijca2016909521

                        @article{ 10.5120/ijca2016909521,
                        author  = { R. Ksohy,A.V. Sakpal,R. More },
                        title   = { Student Progress Predictor },
                        journal = { International Journal of Computer Applications },
                        year    = { 2016 },
                        volume  = { 140 },
                        number  = { 12 },
                        pages   = { 28-32 },
                        doi     = { 10.5120/ijca2016909521 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2016
                        %A R. Ksohy
                        %A A.V. Sakpal
                        %A R. More
                        %T Student Progress Predictor%T 
                        %J International Journal of Computer Applications
                        %V 140
                        %N 12
                        %P 28-32
                        %R 10.5120/ijca2016909521
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Using data mining algorithms can help discover-ing pedagogically relevant knowledge contained in databases obtained from Web-based educational systems. These findings can be used both to help teachers with managing their class, understand their students learning and reflect on their teaching and to support learner reflection and provide proactive feedback to learners.

References
  • Han, J. M. Kamber, Data mining: concepts and techniques, San Francisco: Morgan Kaufman (2012).
  • Agrawal, R. R. Srikant. ”Fast Algorithms for Mining Association Rules” in Proceedings of VLDB, Santiago, Chile (2010).
  • SPSS, Clementine, www.spss.com/clementine/ (accessed 2011).
  • SODAS,http://www.ceremade.dauphine.fr/touati/sodaspagegarde. html (accessed 2013)
  • Witten, E. Frank, Data Mining, Practical Machine LearningTools and Techniques with Java Implementation, Morgan Kaufmann Publishers, 2010.
  • R. Kirkby, WEKA Explorer User Guide for version 3-3-4, University of Weikato, 2012.
  • M. H. Dunham, Data Mining, Introductory and Advanced Topics, Prentice Hall, 2012.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

EDM ANN WEKA

Powered by PhDFocusTM