Research Article

Parkinsonís disease Diagnosis using Mel-frequency Cepstral Coefficients and Vector Quantization

by  Tripti Kapoor, R.K. Sharma
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 14 - Issue 3
Published: January 2011
Authors: Tripti Kapoor, R.K. Sharma
10.5120/1821-2393
PDF

Tripti Kapoor, R.K. Sharma . Parkinsonís disease Diagnosis using Mel-frequency Cepstral Coefficients and Vector Quantization. International Journal of Computer Applications. 14, 3 (January 2011), 43-46. DOI=10.5120/1821-2393

                        @article{ 10.5120/1821-2393,
                        author  = { Tripti Kapoor,R.K. Sharma },
                        title   = { Parkinsonís disease Diagnosis using Mel-frequency Cepstral Coefficients and Vector Quantization },
                        journal = { International Journal of Computer Applications },
                        year    = { 2011 },
                        volume  = { 14 },
                        number  = { 3 },
                        pages   = { 43-46 },
                        doi     = { 10.5120/1821-2393 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2011
                        %A Tripti Kapoor
                        %A R.K. Sharma
                        %T Parkinsonís disease Diagnosis using Mel-frequency Cepstral Coefficients and Vector Quantization%T 
                        %J International Journal of Computer Applications
                        %V 14
                        %N 3
                        %P 43-46
                        %R 10.5120/1821-2393
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper investigates the adaptation of MFCCs to the diagnosis of Parkinson’s disease (PD). The aim of this study is to provide a novel method, suitable for keeping track of the evolution of the patient’s pathology: easy-to-use, fast, non-invasive for the patient, and affordable for the clinicians. This method will be complementary to the existing ones - the perceptual judgment and the usual objective measurement (jitter, airflows...) which remain time and human resource consuming. The system designed for this particular task relies on the Mel-Frequency Cepstral coefficients (MFCC) for feature extraction and Vector Quantization (VQ) for feature analysis which is the state-of-the-art for speaker recognition.

References
  • Little, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O., ‚ÄúSuitability of dysphonia measurements for telemonitoring of Parkinson‚Äôs disease‚Äù, IEEE Transactions Biomedical Engineering (September 11, 2008), doi: 10101/npre.2008.2298.1
  • Ho, A., Iansek, R., Marigliani, C., Bradshaw, J., Gates, S., ‚ÄúSpeech impairment in a large sample of patients with Parkinson‚Äôs disease‚Äù,.Behavioral Neurology 11, 131-37 (1998)
  • Godino-Llorente, J. I., & Gomez-Vilda, P., ‚ÄúAutomatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors‚Äù. IEEE Transactions on Biomedical Engineering, 51, 2004, pp 380‚Äì384.
  • Little, M., McSharry, P., Moroz, I., & Roberts, S. (2006), ‚ÄúNonlinear biophysicallyinformed speech pathology detection‚Äù, In Proceedings of the ICASSP 2006. New York: IEEE Publishers.
  • Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D., Moroz, I.M., ‚ÄúExploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection‚Äù, Biomedical Engineering Online 6:23 (2007)
  • Cnockaert, L., Schoentgen, J., Auzou, P., Ozsancak, C., Defebvre, L., & Grenez, F.(2008), ‚ÄúLow-frequency vocal modulations in vowels produced by Parkinsonian subjects‚Äù, Speech Communication, 50, pp 288‚Äì300.
  • Rahn, D. A., Chou, M., Jiang, J. J., & Zhang, Y., ‚ÄúPhonatory impairment in Parkinson‚Äôs disease: Evidence from nonlinear dynamic analysis and perturbation analysis‚Äù, Journal of Voice, 21, (2007), pp 64‚Äì71.
  • A. A. Dibazar, S. Narayanan, T. W. Berger, ‚ÄúFeature analysis for automatic detection of pathological speech‚Äù, in: Engineering Medicine and Biology Symposium02, Vol. 1, 2002, pp. 182‚Äì183.
  • Fraile R, Godino-Llorente JI, S√°enz-Lech√≥n N, Osma-Ruiz V, Fredouille C, ‚ÄúMFCC-based remote pathology detection on speech transmitted through the telephone channel‚Äù, Proc Biosignals, Porto, 2009.
  • Murphy PJ, Akande OO, ‚ÄúQuantification of glottal and voiced speech harmonics-to-noise ratios using cepstral-based estimation‚Äù, Proc 3rd Int Conf Non-Linear Speech Processing (NOLISP‚Äô05), Barcelona, 2005, pp 224‚Äì232.
  • Fraile R, S√°enz-Lech√≥n N, Godino-Llorente JI, Osma-Ruiz V, G√≥mez-Vilda P, ‚ÄúUse of melfrequency cepstral coefficients for automatic pathology detection on sustained vowel phonations: mathematical and statistical justification‚Äù, Proc 4th Int Symp Image/Video Commun Fixed and Mobile Networks, Bilbao, 2008.
  • Md. Rashidul Hasan, Mustafa Jamil, Md. Golam Rabbani Md. Saifur Rahman, ‚ÄúSpeaker Identification Using Mel Frequency Cepstral Coefficients‚Äù, 3rd Proceedings of International Conference on Electrical & Computer Engineering , ICECE 2004, 28-30 December 2004, Dhaka, Bangladesh,pp 565-568
  • Pouchoulin G, Fredouille C, Bonastre JF, Ghio A, Giovanni A: ‚ÄúFrequency study for the characterisation of the dysphonic voices‚Äù. Interspeech 2007, 8th Annu Conf Int Speech Commun Assoc, Antwerp, 2007, pp 1198‚Äì1201.
  • R. M. Gray, ``Vector Quantization,'' IEEE ASSP Magazine, pp. 4--29, April 1984.
  • Y. Linde, A. Buzo & R. Gray, ‚ÄúAn algorithm for vector quantizer design‚Äù, IEEE Transactions on Communications, Vol. 28, pp.84-95, 1980.
  • R. Fraile a N. S√°enz-Lech√≥n a J.I. Godino-Llorente a V. Osma-Ruiz a C. Fredouille, ‚ÄúAutomatic Detection of Laryngeal Pathologies by MFCC‚Äù, Folia Phoniatr Logop 2009;61:146‚Äì152
  • Karine Rigaldie, Jean Luc Nespoulous, Nadine Vigouroux, ‚ÄúDysprosody in Parkinson‚Äôs disease : Musical scale production and intonation patterns analysis‚Äù , Speech Prosody 2006, Dresden, Germany, May2-5, 2006.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Parkinson disease disease diagnosis Mel frequency Cepstral coefficients Vector Quantization

Powered by PhDFocusTM