Research Article

Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition

by  Savita Ratheee, Kusum Dhingra
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 127 - Issue 8
Published: October 2015
Authors: Savita Ratheee, Kusum Dhingra
10.5120/ijca2015906386
PDF

Savita Ratheee, Kusum Dhingra . Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition. International Journal of Computer Applications. 127, 8 (October 2015), 8-11. DOI=10.5120/ijca2015906386

                        @article{ 10.5120/ijca2015906386,
                        author  = { Savita Ratheee,Kusum Dhingra },
                        title   = { Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition },
                        journal = { International Journal of Computer Applications },
                        year    = { 2015 },
                        volume  = { 127 },
                        number  = { 8 },
                        pages   = { 8-11 },
                        doi     = { 10.5120/ijca2015906386 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2015
                        %A Savita Ratheee
                        %A Kusum Dhingra
                        %T Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition%T 
                        %J International Journal of Computer Applications
                        %V 127
                        %N 8
                        %P 8-11
                        %R 10.5120/ijca2015906386
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

A best proximity point for a non-selfmapping is that point whose distance from its image is as small as possible. In mathematical language, if X is any space, A and B are two subsets of X and T: A → B is a mapping. We can say that x is best proximity point if d(x, Tx) = d(A, B) and this best proximity point reduces to fixed point if mapping T is a selfmapping. The main objective in this paper is to prove the best proximity point theorem for the notion of Geraghty-contractions by using MT-function β which satisfies Mizoguchi-Takahashi’s condition (equation (i)) in the context of metric space and we also provide an example to support our main result.

References
  • Al-Thagafi, M.A. and Shahzad, N: Convergence and existence results for best proximity points, Nonlinear Anal. 70(10), 3665-3671(2009).
  • Bilgili, N., Karapinar,E. and Sadarangani K.: A generalization for the best proximity point of Geraghty-contractions,2013,1-9(2013).
  • Anuradha, J. and Veeramani, P.: Proximal pointwise contraction, Topo. Appl., 156, 2942-2948(2009).
  • Basha, SS. And Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103, 119-129(2000).
  • Caballero, J., Harjani, J. and Sadarangani, K.: A best proximity point theorem for Geraghty contractions, Fixed Point Theory and Application, 2012, 231(2012).
  • Eldred, AA. and Veeramani, P.: Existence and convergence of best proximity points, J. Math. Anal. Appl., 323, 1001-1006(2006) .
  • Geraghty, M.: On contractive mappings, Proc. Am. Math. Soc., 40, 604-608(1973).
  • Jleli, M. and Samet, B.: Best proximity points for α- ψ-proximal contractive type mappings and applications, Bull. Sci. Math., 2013. Doi:10.1016/j.bulsci.2013.02.003.
  • Karapinar, E.: Best proximity points of cyclic mappings, Appl. Math. lett., 25(11), 1761-1766(2012).
  • Karapinar, E. and Erhan, YM.:Best proximity point on different type contractions, Appl. Math. Inf. Sci.,3(3), 342-353(2011).
  • Karapinar, E.: Best proximity points of Kannan Type cyclic weak φ- contractions in ordered metric spaces, An. Stiint. Univ. Ovidius Constanta,20(3), 51-64(2012).
  • Kirk, WA., Reich, S. and Veeramani, P.: Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim.,24, 851-862(2003).
  • Markin, J. and Shahzad, N.: Best approximation theorems for nonexpansive and condensing mappings in hyperconvex spaces, Nonlinear Anal.,70, 2435-2441(2009).
  • Mongkolkeha, C. and Kumam, P.: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl., 155, 215-226(2012).
  • Mongkolkeha, C. and Kumam, P.:Some common best proximity points for proximity commuting mappings, Optim. Lett.,2012.Doi:10.1007/s11590-012-0525-1.
  • Mongkolkeha, C., Cho, YJ. and Kumam, P.:Best proximity points for generalized proximal C-contraction mappings in metric spaces with partial orders, J. Inequal. Appl, 2013,94(2013).
  • Raj, VS. and Veeramani, P.: Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol.,10, 21-28(2009).
  • Raj, VS: A best proximity theorems for weakly contractive non-self mappings, Nonlinear Anal., 74,4804-4808(2011).
  • Lin, I.J., Lakzian, H., Chou, Y.: On best proximity point theorems for new cyclic map, International Mathematic Forum, 7(2012), 1839-1849.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Best proximity point P-property MT-condition.

Powered by PhDFocusTM